東北地域災害科学研究

第55巻 平成31年3月

論説		頁
2016 年台風 10 号小本川洪水における赤鹿地区から宮本地区の 2 次元河床変動再現シミュレーション	千田健一	1
2018 年 7 月西日本豪雨における真備町氾濫域の土砂堆積と氾濫水密度の概算	英夫・鎌滝孝信	7
津波氾濫水密度の簡易評価モデル	松冨英夫	13
下北半島西部,大間町奥戸におけるイベント堆積物調査村上正能・岡田里奈・梅田	告司・鎌滝孝信	19
津軽半島、十三湖周辺に認められる津波と液状化の痕跡	告司・鎌滝孝信	25
2018 年7月西日本豪雨時の富山県内の気象・防災情報に関して	呉 修一	31
平成 28 年北海道豪雨による道路被害からの教訓	誠・林 憲裕	37
イルーン・「これを全体が一つのとれない」、シングが一番ない。 秋田県八峰町市家の沖着低地にみられる洪水推着物について	王奈・梅田浩司	43
秋田県にかけ市沿岸低地にみられる津波なと「バ洪水堆積物の結準		
·····································	正能・梅田浩司	49
	波·田市 仁	55
本日本人長次ジロビ収本表回ジ10月下本土地はジン取火ノメーへわこ初にな年収入4 「「市送取団上均元」が加えた地をなくまとした欧国の部庭のの安坐地についてニマスリガッ領の始則ボニカセレル」が一・マメガッ報転電車の	(米·田丁 匚 	00
同歴見昭切上対面に被否をもにらした阵雨の計画の安日はについてニノアクへ勝が無雨ノークとレークー・ノアクへ所可用型の - ボロケカ美 回日世桜 - 加け見 - こ 見 - 日 - つけ	空间时殿左 ^一 並為	61
万貝示律夫・風间差徴・加竹光氏・天尾和之・子伝	夫子・倖野羊犀 止 <u>佐</u> ヶ山払土	01
八中田山にわりる積雪水重に関する研究	F・佐々 本軒大	67
Sand spit morphological change of An Hai and Le Thinh inlets, Phu Yen Province, Central Vietnam		50
Nguyen Quang Duc ANH • Hitoshi TANAKA • Nguyen Xuan TINH • Nguye	en Trung VIET	73
Recent morphology change at Da Rang River mouth, Phu Yen, Vietnam		
Nguyen Trong HIEP • Hitoshi TANAK • Nguyen Xuan TINH • Nguye	en Trung VIET	79
田んぼダム排水装置に応じた水田貯水量と許容降雨量の算定 竹田	念真・朝岡良浩	85
橋梁部における杉の堆積に関する水理模型実験 西脇 遼・齋藤:	憲寿・渡辺一也	91
UAV を用いた砂州の地形変化についての検討~馬場目川を対象として~	憲寿・渡辺一也	97
直立壁前面における捨石堤の不規則波による変形特性に関する水理模型実験	研也・田中 仁	103
三沢海岸の長期的な汀線変化の特徴	琴・佐々木幹夫	109
三沢海岸 2018 年地形変動特性	加・佐々木幹夫	115
十三湖における塩水の溯上特性 赤坂 光・佐々木	幹夫・功刀 智	121
小川原湖塩水溯上特性	詮夫・功刀 智	127
健骨置屋根構造における地震力の伝達メカニズム 山口優樹・藤田	習己・飯藤將之	133
「一個性智慧効果をする方法がない」」を引加した1層フレーム試験体の振動台加振試験 … 横田陽大・藤田知己・佃中 方・船木	尚戸・飯藤將之	139
以上以至かれて日子ションはMul · こうからして「眉子・ マールの大下ションがかっかかいいか」(東国の人)は第国日 A+ A かつ	前已 (成成) 元 新彦・	145
1000年後の102年少秋田県林第一門にや地震による広日に対する大阪時間 万田川	以序 - 现外什文 洋山 - 水田勤彦	151
1014 千代山田石地展こ代田不即聖千汉 現代	十丈 小田敬彦	157
律社十期用的の地震時半越流明然 1430年には14508年には14508年には1450881011111111111111111111111111111111	前前 山中住了	161
2018 キロ水良部穴田頃穴管液レインタイでの対応と課題 パーパー	実和・田平住于 マバミム パーマ	101
加援実験と期的評価による石場建し構法の摩擦力の検討・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	ノトフカルロス	167
	小官止俗	173
備局県の広帯或リニアアレイで観測された常時領動の地震波十渉法解析一南北測線における解析 起田質親・山本:	長和・齊藤 剛	179
岩手大学で観測された短周期微動の地震波十渉法解析による群速度の推定 佐々木恵太・山本	吳和・齊滕 剛	185
微動アレイ探査による盛岡市域における S 波速度構造の推定 - 楜密極小アレイ観測と大規模アレイ観測 -		
多田光希・大場星也・山本	英和・齊藤 剛	191
再生可能エネルギーを活用するための小型振り子発電装置の開発	協遼・渡辺一也	197
液状化実験を活用した効果的な防災教育の検討		
手塚 寛・Muhammad Salman Al FARISI・関 亜美・熊谷裕太・新谷直己・宮鍋。	蹇介・久利美和	203
自主的・持続的な防災教育活動の普及を目指した実施支援 -減災アクションカードゲームを例に-		
	直己・久利美和	209
山形大学の教員養成における学校防災教育-教職大学院と学部	村山良之	215
東日本大震災被災地における復興事業完了後の津波避難訓練の取り組み-2018 年福島県いわき市薄磯区の事例-		
杉安和也,高橋秀幸,横田信革,片山健太,Garcia Fry MARTIN,為一半,小野寺。	唐美・菊地弘幸	221
火災時における避難リスクの認知向上を目指した屋内濃煙体験訓練の提案	和也·小林 光	225
→田学を用いた災害シミュレーションの可知化毛汁の検討	※高・趣庭雅明	231
地区防治計画制度の美及に上名地域防災力の向上なり採用 回販(炭) 温尿久上、淋目用一、寸田貫一時、「大田」	一,亚明由佳子	237
一つ戸内へ町戸内及ど市へにある地域的ペルジ内上で日泊して 一万以道也:小小小子		

文部科学省研究開発局 自然災害研究協議会東北地区部会 日本自然災害学会東北支部 東北地区自然災害資料センター

Tohoku Journal of Natural Disaster Science

Volume 55

March, 2019

RTICLES	Kanial: CHIDA	Paş
a simulation of river bet elevation change at Omoto river in 2016 typhoon No10		
ediment deposit and rough estimation of the density of inundation water in Mabi-cho hooded area ca	aused by the west Japan torrential rainfall in July, 2018	
	Hideo MAISUIOMI and Takanobu KAMAIAKI	
t simple evaluation model for the density of tsunami mundation water	Hideo MATSUTOMI	
A study of event deposits in coastar lowiand on the western coast of Shimokita Fehinsula	AMI Pine OKADA Keij UMEDA and Tekeneby KAMATAKI	
wasayoshi wonaka	Rine OKADA, Koji UMEDA and Takanobu KAMATAKI	
lices of isuffaint and inqueraction recorded around the Lake Susan, rsugaru reinfall avant in July 20	118 Shuichi KURE	
assaster and meteorological miormation issued in Toyana prefecture during rannan event in oury 20	Makete OKUMURA and Novibire HAVASHI	
lood denosits recorded in coastal lowland on southern part of the Hanno town. Akita Prefecture		
food deposits recorded in coastar lowiand on southern part of the mappo town, riskar refecture	Takanohu KAMATAKI Bina OKADA and Koji UMEDA	
study of tunami and flood deposits on coastal lowland in Nikaho City. Akita Prefecture		
Hiroshi UNAI.Takanobu KAMATAKI, Norihumi ABE, Tatuki TOKUMARU, Hideo MATSUTO	MI. Rina OKADA. Masavoshi MURAKAMI and Koji UMEDA	
Destruction mechanism of coastal structures during the 2011 Tohoku Tsunami and new countermeas	sures	
Validity of the evaluation of rainfall that caused damage to cut slopes of expressway		
study on snow water on Hakkoda mountain		
and spit morphological change of An Hai and Le Thinh inlets, Phu Yen Province, Central Vietnam		
Nguyen Quang Duc ANH, Hito	shi TANAKA, Nguyen Xuan TINH and Nguyen Trung VIET	
lecent morphology change at Da Rang River mouth, Phu Yen, Vietnam Nguyen Trong Hiep, Hi	itoshi Tanaka, Nguyen Xuan TINH and Nguyen Trung VIET	
Calclation of Water storage capacity and Allowable rainfall among different Drainage devices in the P	Rice field dam	
experimental Study on Accumulation of Cedar at the Bridge F	Ryo NISHIWAKI, Noritoshi SAITO and Kazuya WATANABE	
tudy on the Sandbar of Topographical Change using UAV:As a target Babame River	Naoya FUJISAWA and Kazuya WATANABE	
lydraulic model experiment on deformation characteristics due to irregular waves of rubble mound b	preakwater at the front of upright seawall	
	Kenya TAKAHASHI and Hitoshi TANAKA	
haracteristics of Long Term Shoreline Change on Misawa Coast	Momoka, KUBOTA, Mikoto KASAI and Mikio SASAKI	
haracteristics of shoreline in Misawa coast in 2018	Mikoto KASAI, Momoka KUBOTA and Mikio SASAKI	
Characteristics of salt water intrusion in Lake Jusan	Hikaru AKASAKA, Mikio SASAKI and Satoru KUNUGI	
Characteristics of saltwater intrusion in Lake Ogawara	Kosuke KIMURA, Mikio SASAKI and Satoshi KUNUGI	1
'ransmission mechanism of seismic force in steel roofs and RC frames	uki YAMAGUCHI, Tomomi FUJITA and Masayuki HANDO	
haking Table Test of One Story Test Specimen Frame with Liquid Damper		
Takahiro YOKOTA, Tomomi FUJITA, Tom	noyuki HATANAKA, Naoki FUNAKI and Masayuki HANDO	
iterature survey of Akita-ken Moriyoshi-Ani earthquakes of 1906 and 1982	Toshihiko MIZUTA and Hiroshi KAGAMI	
he 1914 Akita Senboku earthquake and Akita Prefectural College of Education	Hiroshi KAGAMI and Toshihiko MIZUTA	
redominant frequencies during earthquakes observed in southern part of Tsugaru plain	Shunichi KATAOKA	
peration and issues under the 2018 volcanic eruption warning level 4 on Kuchinoerabu volcano	Miwa KURI, and Yoshiko YAMANAKA	
haking Table Test and FEM Analysis to Evaluate Friction Force on Wood-stone Support	Y. SUETSUGU and C. CUADRA	
eismic activity of shallow low-frequency earthquakes	Masahiro KOSUGA	
eismic interferometry analysis of microtrenors observed in a lineae array with broadband seismometers in Fuku	ushima Prefecture K. OKITA, H. YAMAMOTO and T. SAITO	
stimation of group velocity by seismic interferometry analysis of short period microtremors observed	d at Iwate University	
	K.SASAKI, H.YAMAMOTO and T.SAITO	
stimation of S-wave velocity structures in Morioka area by using microtremor array survey –Observa	ation using miniature arrays and one using large size arrays	
	K.TADA, H.YAMAMOTO, S.OHBA and T.SAITO	
evelopment of a compact pendulum power generator to utilize renewable energy		
Noritoshi SAITO, Keit	ta TAKAHASHI, Ryo NISHIWAKI and Kazuya WATANABE	
nvestigation of effective education for disaster mitigation by utilizing liquefaction experiment		
Hiroshi TETSUKA, Muhammad Salman Al FARISI, Tsugumi SEKI, Yuta KUMA	AGAI, Naoki ARAYA, Keisuke MIYANABE, and Miwa KURI	
upport activities aimed at dissemination of voluntary and sustainable education for disaster mitigation	n: an example of the Disaster Mitigation Action Card Game	
Tsugumi SEKI, Muhammad Salman Al FARISI, Hiroshi TETSUKA, Shinji IS	SHIBASHI, Yuta KUMAGAI and Naoki ARAYA, Miwa KURI	
beneter education in the course of teacher training in Vamagata University	V L ' L ' MITD AX/AMA	
is a set of the course of teacher training in Trainagata Oniversity	Toshiyuki MUKAYAMA	
iction of the evacuation drills of the post recovery project from 2011 Great East Japan Earthquake –	Case study at 2018 usiso iwaki city fukushima	
Jassee Feucation of the evacuation drills of the post recovery project from 2011 Great East Japan Earthquake – Kazuya SUGIYASU, Hideyuki TAKAHASHI, Nobuhide YOKOTA, Kenta KATAYAMA, Garcia Fry MARTIN	Case study at 2018 usiso iwaki city fukushima N, Ikkoh TACHIBANA, Kiyomi ONODERA and Hiroyuki KIKUCHI	1
sease equication in the course on teacher training in Tainagata Oniversity	Tosniyuki NU KATAMA Rese study at 2018 usiso iwaki city fukushima N, Ikkoh TACHIBANA, Kiyomi ONODERA and Hiroyuki KIKUCHI	1
Asset e duction of the evolution of the constructions in the initial of the post recovery project from 2011 Great East Japan Earthquake – Kazuya SUGIYASU, Hideyuki TAKAHASHI, Nobuhide YOKOTA, Kenta KATAYAMA, Garcia Fry MARTIN 'roposal of dense smoking drill at indoor aimed for recognizing evacuation risks in case of fire Takeshi	Tosniyuki MUKATAMA Case study at 2018 usiso iwaki city fukushima N, likoh TACHIBANA, Kiyomi ONODERA and Hiroyuki KIKUCHI WATANABE, Kazuya SUGIYASU and Hikaru KOBAYASHI	2

Michiya IRADSAWA, Kouichi OBARA and Yukako HIRAKADO 237

Tohoku Research Group for Natural Disaster Science

2016年台風 10 号小本川洪水における赤鹿地区から宮本地区の

2次元河床変動再現シミュレーション

(株)防災技術コンサルタント 千田 健一

1. はじめに

2016年台風10号による小本川出水では、乙茂(おとも)地区で高齢者福祉施設が被災し、 その下流の赤鹿地区~宮本地区では、土砂と洪水が集落内に侵入した(南雲、江頭)。本研究 は、その土砂堆積範囲を衛星写真より確認するとともに(図-2),河床材料等の現地確認調 査を実施し、混合流径河床変動計算の手法を用いて上記浸食・堆積現象を再現する(図-1)。 なお、流出解析には CommonMP,移動床計算には iRIC Ver3.0の iRIC Nays2DH を用いる。

図-2 赤鹿地区の氾濫・土砂堆積・浸食領域判読 航空写真(2018年7月27日グーグルマップ衛星写真にIRICによりアクセス)

*A simulation of river bet elevation change at Omoto river in 2016 typhoon No10. by Kenichi Chida

2. 流出解析

流入ハイドログラフは,水位局の存在する赤鹿地区上流で求めた。流出解析ツールは commonMP(ver1.5)である。パラメータは総合貯留関数法により同定した。流域平均雨量は,流域 内に位置し,2 次元河床変動シミュレーション対象領域至近の岩泉(気象庁)時間雨量とした。 計算の結果,小本川の赤鹿水位観測所位置でのピーク流量は,3,000m³/s(≒2926m³/s)と計算され た。この値は,風間,江頭らの検討結果とほぼ等しい。

表-1 流域定数一覧表

流域	標高	流路	勾配				遅滞	初期	飽和	飽和	基底
面積	差	長		リザーブ定数			時間	流出	流出	雨量	流量
			Ι					率			
А	ΔH	L					T1	f1	fsa	Rsa	
km ²	m	km	—	С	Κ	Р	hr	_	—	mm	m ³ /s
700	1340	60	0.022	0.12	72	0.33	2	0.5	1.0	100	10.0

3. 現地確認調査

現地確認調査は,2018年(H30)年7月17日および8月14日に,下記の要員にて実施した。 主任 千田健一 調査補助 千田聖 ロジステクス 千田智香子

現地調査状況を図-4 に示す。河床材料は,赤鹿橋右岸下流の中洲にてサンプリングし,後日,粒径・重量を計測し,粒度加積曲線図を作成した(図-5参照)。

図-4 現地調査写真及び位置図

図-5 粒径調査結果

4. シミュレーション条件

シミュレーション条件の詳細を以下に示す。

5. 2次元河床変動シミュレーション結果の要約

表-3 2次元河床変動シミュレーション結果のまとめ

6. シミュレーション結果の考察

図-6上段は赤鹿地区のグーグル画像である(2018/06/15 アクセス)。拡大すると,水没した赤 鹿橋の橋面の泥の清掃が終わっていない段階で,発災直後の写真とわかる。写真判読による土砂 堆積域を点線,土砂浸食域を実線で示した。シミュレーションでは,赤鹿橋の上流湾曲部外縁で は浸食が生じている(図 - 6 下段)。このことは,航空写真からは水面下であることから確認で きない。航空写真から、宮本地区陸上部では,氾濫流により水田が浸食され,その周辺で土砂堆 積が生じていることが分かる(図 - 6 上段)。これと,シミュレーション終了時の河床変動量分 布を比べると,両者の空間分布は概ね一致した(図 - 6 下段)。

図-6 シミュレーション結果の考察

参考文献

(1)原田大輔・江頭進治・萬矢敦啓・岩見洋一 2016 年度小本川災害における流路・河床変動を伴う洪水流の解析 2017 年度河川技術に関するシンポジウム OPS1 話題提供 PPT
 (2)平成 28 年台風第 10 号による岩手県災害調査報告書 土木学会 2017 年 7 月

2018年7月西日本豪雨における真備町氾濫域の

土砂堆積と氾濫水密度の概算*

秋田大学 松冨英夫

秋田大学 鎌滝孝信

1.はじめに

2018年7月6日~7日にかけた前線性西日本豪雨(正式名称:平成30年7月豪雨,期間:6月28日~7 月8日。以下,本豪雨)により,一級河川高梁川の右一次支川小田川沿いの倉敷市真備町地区にお いて越水や破堤により大規模な洪水氾濫が発生した。内水,小田川の越水や破堤氾濫ばかりでなく, 左二次支川末政川,高馬川,内山谷川,右二次支川真谷川の越水や破堤氾濫も発生したためで(破 堤は計8箇所),総氾濫面積は12 km²(地区面積の27%)程度¹⁾,最大氾濫浸水深は5.4 m²⁾に達した。 真備町地区の死者は51人に達し³⁾,高齢者の犠牲(鉛直避難の失敗)が目立った。全壊家屋数は4,520 棟(倉敷市全体)で,これは本豪雨における市町村単位の全壊家屋数としては最大である⁴⁾。

洪水や津波氾濫後の土砂堆積の検討は洪水では氾濫流の流向や流速,規模評価,洪水と津波氾濫 の違いなどを目的として⁵⁾,津波では歴史津波の規模評価を主目的として⁶⁾行われている。洪水と津 波氾濫の違いでは,建築物に対する被害程度の違いも論じられている⁷⁾。

本研究は、土砂堆積と密接に関係する氾濫水密度に着目した津波荷重や津波規模評価の高度化研 究を背景に⁸⁾、本豪雨における真備町氾濫域の現地調査に基づいて、洪水氾濫による土砂堆積の実 態や氾濫水密度などを論じる。

2. 現地調査

現地調査は2018年7月19日,20日の実質2日間である。主な調査項目は真備町地区氾濫域の各調査 地点(St.と略記)における最大氾濫浸水深(=最大氾濫浸水痕跡水位-土砂堆積地点地盤位)およ び堆積土砂の厚さと断面構造である。最大氾濫浸水深の測定にはレーザー距離計(Laser Technology 社製)を用いた。

図-1に調査地点(●)や破堤地点(×),堤防法面崩壊地点(△)などを示す。図中の黒アラビア数字は調査地点番号,赤ローマ数字は破堤地点番号である。

公 1 元地则且相不例							
調査 地点	浸水痕跡場所	土砂採 取場所	堆積 土砂	浸水深 <i>h</i> (m)	土砂堆積厚 Z(cm)	直線距離 <i>L</i> (m)	備考
St.1	排水機場建屋壁面	畔	泥	5.25	1~3	1010	
St.2	健康福祉館壁面	駐車場他	泥	3.97, 3.54	0.4, 0.2~0.4	690, 730	9時前停止
St.3	浄化センター建屋壁面	水路の蓋	泥	6.05	0.2	840	
St.4	2階建て住家壁面	畔	泥	5.52	1.5~4	830	
St.5	2階建て住家壁面	畔	泥	5.39	2.5	610	
St.6	3階建てRC造住家壁面	畔	泥	4.51, 4.39	0.5~1, 0.2~0.3	790, 820	
St.7	整備工場建屋内側壁面	道路脇	泥	5.69	1.5~2	640	証言
St.8	大型平屋店舗壁面	水田内	砂+泥	6.22	2.5	1090	砂0.2~0.3cm
St.9	2階建て住家壁面	畑地内	砂+泥	5.01	2~2.2	680	同厚
St.10	建造中2階建て住家壁面	水田内	砂+泥	5.23, 4.78	3, 2.8	570	2層(1+2.1)
St.11	2階建て住家壁面	畔	砂+泥	5.72	2	460	砂層0.1 cm
St.12	2階建て住家壁面	畔	泥	5.73	1~1.5 (乾燥)	700	1.5~2 (湿潤)
St.13	蔵壁面	休耕地内	砂	5.42	5~6	90	

表-1 現地調査結果例

* Sediment deposit and rough estimation of the density of inundation water in Mabi-cho flooded area caused by the West Japan torrential rainfall in July, 2018 by Hideo MATSUTOMI

 図-1 倉敷市真備町地区における浸水深や土砂堆積厚などの調査地点(国土地理院地形図に加筆。●: 調査地点,×:破堤地点,△:堤防法面崩壊地点,□:三角点,□:水準点,黒アラビア数字は 調査地点番号,赤ローマ数字は破堤地点番号)

図-2 St.9における堆積土砂の断面構造(砂層+泥層)

3. 土砂堆積状況の実態例

本研究では堆積土砂の成分を砂(sand)と泥(シルト・粘土, mud)の2種類に大別して論じる⁹。 表-1に各調査地点における現地調査結果例を示す。図-2にSt.9における堆積土砂の断面構造(砂層 +泥層)を示す。堆積土砂の成分は泥が主体(mud-dominated)であった。

図-3に各調査地点における最大氾濫浸水深h(m)と土砂堆積厚Z(cm)の関係を示す。図中には土砂 堆積厚を最大氾濫浸水深の0.5%,1%,2%とした場合の関係が破線で示されている。2%は2011年東 北地方太平洋沖地震津波において仙台平野で得られた平均的な値で、■はそのときの取得データ例 (sand-dominated領域)である⁹。▲は2017年7月の秋田豪雨において一級河川雄物川の左一次支川 大納川の氾濫調査¹⁰(参考文献10)における図-6中の*h*=1.05 m地点。溢水氾濫河川近傍の住家背後) で得られたもの(mud-dominated領域)である。図から、本豪雨における真備町地区氾濫域の土砂 堆積厚は東北地方太平洋沖地震津波における仙台平野の場合と比べて薄い傾向にあることが判る。

図-3 最大氾濫浸水深hと土砂堆積厚Zの関係(赤破線囲いは砂や砂を含む土砂の堆積)

図-4 最寄りの破堤地点からの直線距離Lと土砂堆積厚Zの関係(赤破線囲いは砂や砂を含む土砂の堆積)

ただし、堆積土砂が砂を有意に含む場合は(赤破線囲いのデータ。表-1参照)、堆積厚が厚い傾向 にある。津波氾濫の場合に比べて土砂堆積厚が薄い理由として、(1)洪水の氾濫水土砂濃度は津波の ものに比べて薄い、(2)全般的に調査地点が破堤地点から大きく離れていて(後述の図-4参照)、洪 水氾濫流の流勢が弱い⁷、(3)本氾濫域は袋小路の湛水域で¹¹⁾、全氾濫水量が制限された中で積極的 に人工排水が行われたこと¹²⁾、すなわち最大氾濫浸水深の割に全土砂量が少ない(湛水時間≅土砂 の沈降時間が短いとも言える)ことなどが考えられる。

参考までに、本研究現地調査における最大氾濫浸水深の中に土木学会発表の5.4 m²⁾より大きいものが存在する。これは著者らが主に一段低い田畑内の土砂堆積を対象としているためと考えられる (**表**-1参照)。また、土砂堆積厚はデータ収集時の堆積土砂の状態、すなわち乾燥状態(dry)か湿 潤状態(wet)かに依存することに注意を要する。

図-4に各調査地点における最寄りの破堤地点からの直線距離L (m)と土砂堆積厚Z (cm)の関係を示す。直線距離はGoogle Earthの距離測定機能を用いて評価している。図中の赤破線囲いの意味は 図-3の場合と同じである。また、暫定的に両者の関係に対する2種類の上限線が破線で示されてい る。図から、破堤地点から離れるにつれて、土砂堆積厚が薄くなることが判る。この傾向は東北地 方太平洋沖地震津波において仙台平野で得られた土砂堆積傾向⁹や一様勾配斜面を遡上する津波を 模擬した土砂を含む氾濫流によるもの¹³⁾と同じである。St.1,4,8の3調査地点における土砂堆積厚 が直線距離の割に厚めである。St.1に最寄りの破堤地点はVII地点、St.4はIV地点、St.8はV地点であ る。これら3調査地点の共通事項は次のような個別事情を有することである。St.1は近傍に排水路と 小田川への排水樋管があり、土砂が集まり易いところと推定される。St.4は破堤延長が100m程度に 達した大規模な破堤部の下流域正面に位置している、換言すれば、洪水氾濫流が道路や鉄道施設(国 道486号と井原鉄道)などの大規模な人工構造 物に妨げられていないところである。St.8は破 堤地点IVとV(破堤延長300m程度)からほぼ等 直線距離に位置しているところである。

4. 氾濫水の断面平均土砂濃度と密度の概算

4.1 真備町地区の湛水量, 貯留率と堆積土砂量

真備町地区氾濫域の湛水量,貯留率,堆積土 砂量を利用可能なデータを用いて概算する。

小田川の幹川延長は72.9 km, 流域面積は492 km²である。高梁川の幹川延長は111 km, 流域

図-5 小田川と高馬川の合流地点直下流における破 堤氾濫流況(国交省撮影。破堤延長は約100 m)

面積は2,670 km²で,流域平均の2日間降水量は356 mm¹⁴⁾であった(3日間降水量350 mmという資料¹⁵⁾ もある)。したがって,小田川流域における全降水量は492 km²×356 mm=1.75×10⁸ m³と概算される。

真備町地区における氾濫水の最大貯留量は,最大氾濫域の平面形を三角形¹⁶,その三角形の頂点から底辺に垂直方向の断面形も三角形,すなわち三角錐と仮定し,最大氾濫面積を12 km²,最大氾 濫浸水深を6 m(表-1参照)とすれば,12 km²×6 m/3=2.4×10⁷ m³と概算される。

したがって、真備町地区氾濫域の貯留率(=最大貯留量/全降水量)は2.4/17.5=0.137≅14%ということになる。この貯留率は2017年7月秋田豪雨における3~6%¹⁰⁾の2.3~4.6倍である。真備町地区はいかに貯留効果が大きく、洪水氾濫被害が甚大となり易いかが理解される。

真備町地区氾濫域の堆積土砂量は,土砂堆積厚として表-1に示した13調査地点の土砂堆積厚の平均値0.0202 mを採用すれば,12 km²×0.0202 m=2.43×10⁵ m³(間隙を含む)と概算される。この堆積 土砂量は10トンダンプトラックで約40,000台分である。

4.2 真備町地区の氾濫や湛水の状況

- ・7月7日01:34に高馬川右岸の破堤(II地点)が確認された¹²⁾。この時刻は2.6 km下流に位置する小田川の矢形橋基準地点(高梁川との合流地点から0.8 km上流)における水位記録¹⁵⁾から推してほぼ最大水位時と考えられる。証言によれば¹⁷⁾,7月6日23:30~24:00の間に破堤したとのことである。この破堤時刻頃の車載のライブ映像写真(7月6日23:58)が存在する¹⁸⁾。
- ・証言によれば¹⁷⁾,高馬川合流点直下流の小田川左岸の破堤(IV地点)は7月7日02:00~05:00の間 とのことである。図-5は7月7日07:00頃に撮られた破堤地点における氾濫状況写真で(破堤は06:52 に確認)¹²⁾,この時刻頃には堤内外の水位差がほとんど認められない。すなわち,堤内地側がほ ぼ満水状態に達していたことを示している。破堤時の堤内地側の湛水深は不明であるが,破堤地 点の堤内地側が流勢で大きく浸食されていることから¹⁵⁾,2~5時間の短時間で急激に増水,すな わち氾濫水は有意な氾濫流速を持った後に満水状態になったと推定される。
- ・矢形橋基準地点では7月7日02:30に最大水位T.P. 15.49 mに達し、7月6日23:10~7月7日16:40までの
 17.5時間ほど計画高水位T.P. 14 mを超えた¹⁵⁾。7月7日の07:00には最大水位から1 m程度(T.P. 14.5 m)、24:00には3 m程度(T.P. 12.5 m)水位が下がった¹⁵⁾。
- ・証言によれば¹⁷⁾,末政川右岸(V地点)は7月7日00:00過ぎ(高馬川右岸破堤の少し後),左岸の2 箇所(VI, VII地点)は7月7日06:30~07:00の間に破堤したとのことである。
- ・調査地点St.2(浸水深は3.54~3.97 m)は、浸水して停止した高所にある時計から、7月7日09:00 頃にほぼ最大浸水位に達したと推定される。
- ・国土地理院の資料によれば¹⁶),7月7日の日中と7月8日14:00の真備町地区氾濫浸水域はほぼ同じである。しかし、氾濫浸水域はあまり変化していないが、氾濫浸水位が大きく低下した写真が7月8日15:00に撮られている¹²⁾。その後、7月10日14:00までに氾濫浸水域はほぼなくなっている¹⁶⁾。以上から、少なくとも7月7日07:00~7月7日17:00頃までの10時間は氾濫浸水域が満水状態であっ

たと推定される。その後、7月10日14:00までの69時間をかけて氾濫水は排水(蒸発を含む)された

と推定される。**図-6**に真備町地区氾濫浸水域に おける湛水深の推定経時変化を示す。

4.3 断面平均の土砂濃度と氾濫水密度の概算

真備町地区氾濫域における氾濫水の断面平 均の土砂濃度Cmと密度pを概算するため,前節 の諸状況を踏まえて簡易な満水・排水時の土砂 堆積モデルを考案する。本モデルの考案に際 し,次の仮定を導入する。

(1)前節で仮定した三角錐域と異なるが、本節の 検討では氾濫・湛水域を矩形で水平床とする。

図−6 真備町地区氾濫域での湛水深の推定経時変化

(2)氾濫・湛水域における増水時間は短く(図-6の破線部),増水時の氾濫水は有意な氾濫流速を持っているので,土砂堆積は無視できるとする。

(3)7月7日07:00~17:00までの10時間は満水状態で,浸水深は6/3=2 mとする。このときの貯留量は前々節で評価した最大貯留量とする。また,断面平均の氾濫水密度は時・空間的に一定とする。
 (4)7月7日17:00~7月10日14:00までの69時間で氾濫浸水深は2m~0m~直線的に減少する。

4.3.1 計算法

以上の仮定から、土砂の沈降速度をvfとすれば、満水時の土砂堆積量(実体積)は、

• $2.4 \times 10^7 \text{ m}^3 \times C_m \times 10 \times 3600 \text{ s} \times v_{f}/2 \text{ m} = 4.32 \times 10^{11} \text{ m}^3 \times C_m \times v_f \text{ s/m}$

排水時の土砂堆積量(実体積)は次の2ケースが考えられる。

・2.4×10⁷ m³×C_m : 無次元時間t_{*1}=69×3600 s×v_f/2 m≥1

• 2.4×10⁷ m³× C_m ×69×3600 s× $v_f/2$ m=2.98×10¹² m³× C_m × v_f s/m : t_{*1} <1 (3)

4.3.2 計算例

したがって、土砂粒径毎の断面平均土砂濃度は (vはストークスの式で評価。温度は20℃を仮定)、

- ・ d_{50} =0.02 mm (v_{f} =3.6×10⁴ m/s, t_{*1} =44.7) のとき 式(1)+式(2)=1.80×10⁸ m³× C_{m} =2.43×10⁵ m³ ∴ C_{m} =1.35×10⁻³=0.135%
- ・ d_{50} =0.01 mm (v_{f} =8.9×10⁻⁵ m/s, t_{*1} =11.1) のとき 式(1)+式(2)=6.24×10⁷ m³× C_{m} =2.43×10⁵ m³ ∴ C_{m} =3.89×10⁻³=0.389%
- ・ d_{50} =0.005 mm (v_{f} =2.23×10⁻⁵ m/s, t_{*1} =2.77) のとき 式(1)+式(2)=3.36×10⁷ m³× C_{m} =2.43×10⁵ m³ ∴ C_{m} =7.22×10⁻³=0.722%
- ・ d_{50} =0.002 mm (v_f =3.56×10⁻⁶ m/s, t_{*1} =0.442) のとき

一般的に排水中に氾濫水の濁りがなくなることはないと考えられる。濁りがなくならない条件は $t_{*1}=1$ で、このときの沈降速度は 8.05×10^6 m/s ($d_{50}=0.003$ mm) となり、断面平均土砂濃度は、

 $\exists I(1) + \exists I(2) = 2.75 \times 10^7 \text{ m}^3 \times C_m = 2.43 \times 10^5 \text{ m}^3$ ∴ $C_m = 8.84 \times 10^{-3} = 0.884\%$

ほぼ乾燥した自然堆積土砂の間隙比eを2~3とすれば、断面平均土砂濃度は上記の1/3~1/4倍となる。 氾濫水の密度 ρ や比重 ρ/ρ_w は、 ρ_s を土砂の密度、 ρ_w を清水の密度とすれば、次式から評価される。

$$\rho = \rho_{w} \left\{ 1 + \left(\frac{\rho_{s}}{\rho_{w}} - 1 \right) C_{m} \right\}$$
(4)

 $ho_s/
ho_w=2.65$, $e=2\sim3$ とすれば,各土砂粒径に対する氾濫水の比重は次のように評価される。

・ d_{50} =0.020 mmのとき: ρ/ρ_w =1.0005~1.0007, · d_{50} =0.010 mmのとき: ρ/ρ_w =1.0016~1.0021

・ d_{50} =0.005 mmのとき: ρ/ρ_w =1.0030~1.0040, · d_{50} =0.003 mmのとき: ρ/ρ_w =1.0036~1.0049

・ $d_{50}=0.002 \text{ mm}$ のとき: $\rho/\rho_w=1.0083 \sim 1.0110$

現実的には*p*/*p*_w=1.0036~1.011と考えられ,海水の比重(≅1.03程度)よりもかなり小さい。したがって,河口から流出した土砂水は海水表面部を広がることになる。

(1)

(2)

5.おわりに

2018年7月の西日本豪雨における大規模な洪水氾濫域である倉敷市真備町地区の現地調査に基づいて,洪水氾濫による土砂堆積の実態,氾濫水の断面平均の土砂濃度Cmと密度pを検討した。主な結果は次の通りである。

- (1)調査地点St.13を除き,破堤地点から大きく離れた調査地点が多く,堆積土砂は泥が主体で,堆積 厚Zは最大氾濫浸水深hの1%以下であった。この堆積厚は津波氾濫におけるものより薄い。
- (2)時間差を持つ2方向からの氾濫流があったためか,砂+泥の層が2層形成された調査地点(St.10) が存在した。下層は1.0 cmと薄く、上層は2.1 cmであった。本調査地点は堆積作用のみであった と考えられる。
- (3)初め氾濫流は北から来襲し、その後南から来襲したにもかかわらず、泥層1層のみが形成された 調査地点(St.7)も存在した。
- (4)津波の場合⁹⁾と同様,砂や砂を含む土砂の堆積層が形成される場合は堆積厚が厚い傾向にあった。
- (5)土砂堆積厚は破堤地点からの直線距離Lに依存し,直線距離が増加するにつれて薄くなるが,個別の条件次第では直線距離に関係なく厚くなるところも存在した。
- (6)大胆な仮定や土砂堆積モデルを導入して、今回の現地調査で得られた土砂堆積データから氾濫水の断面平均土砂濃度(0.22~0.67%)と密度(1.004~1.011g/cm³)の評価を試みた。氾濫水密度は 海水密度より小さいという妥当な結果が得られた。

謝辞:本研究の遂行にあたり科学研究費(基盤研究(C), 17K01320)の補助を受けた。謝意を表する。

参考文献

- 1)毎日新聞:真備の死者9割が自宅で 高齢で2階上がれず(2018年7月22日版), 2018/8/20参照.
- 2) 産経新聞: 真備の浸水は5.4メートル「1階から2階への避難も困難」(2018年8月4日版), 2018/8/4参照.
- 3) 岡山県:平成30年7月豪雨による被害等について(8月17日14時現在), 2018/8/20参照.
- 4) 消防庁:平成30年7月豪雨及び台風第12号による被害状況及び消防機関等の対応状況について(第52報), 2018/8/20参照.
- 5) 例えば, 産総研:鬼怒川大水害による洪水堆積物の特徴を緊急調査により解明 一地層から過去の洪 水履歴を読み解くための鍵一, 2018/8/27参照.
- 6)西村裕一:津波堆積物の時空間分布に基づく古地震の調査研究,地震,第2輯,第61巻特別号, pp.S497-S508, 2009.
- 7) 松冨英夫:破堤氾濫と家屋被害,平成16年7月北陸豪雨災害調査報告書,土木学会・平成16年7月北陸 豪雨災害緊急調査団, pp.67-72, 2005.
- 8) 松冨英夫,岡田隼人,久保田友寛,今野史子: RC造建築物に作用する津波荷重の氾濫水密度への依存に関する基礎実験,土木学会論文集B2(海岸工学), Vol.74, No.2, pp.265-270, 2018.
- 9) Goto, K., Chagué-Goff, C., Fujino, S., Goff, J., Jaffe, B., Nishimura, Y., Richmond, B., Sugawara, D., Szczuciński, W., Tappin, D.R., Witter, R. and Yulianto, E.: New insights of tsunami hazard from the 2011 Tohoku-oki event, *Marine Geology*, 290, pp.46-50, 2011.
- 10) 松冨英夫, 今野史子: 2017年7月秋田豪雨による雄物川洪水氾濫の特徴と課題, 土木学会論文集B1(水 工学), Vol.74, No.4, pp.1165-1170, 2018.
- 11) 岡山大学教育学部社会科教室内地域研究会:真備町 ―その地理と社会科教育―,地域研究第25集, p.188, 1983.
- 12) 国土交通省中国地方整備局河川部:平成30年7月豪雨による中国地方整備局管内の出水概況 平成30 年8月10日(金), 2018.
- 13) 松冨英夫,今野史子,後村晃基,今藤晃太,鎌滝孝信,渡邉一也:津波氾濫水密度とその遡上距離や 土砂堆積への影響に関する定量実験,土木学会論文集B2(海岸工学), Vol.73, No.2, pp.373-378, 2017.
- 14) 国土交通省東北地方整備局:平成30年7月豪雨(西日本豪雨)災害の概要, 2018.
- 15) 国土交通省岡山河川事務所:第2回高梁川水系小田川堤防調査委員会資料,2018.
- 16) 国土地理院: 浸水推定断彩図, http://www.gsi.go.jp/BOUSAI/ H30.taihuu7gou.html, 2018/7/16参照.
- 17)山陽新聞:「水が来るぞ!」叫びながら自宅へ 真備であの日何が, 濁流の証言(2018年8月6日版), 2018/8/29参照.
- 18)前野詩朗:2018年7月西日本豪雨による岡山県における河川災害の概要と課題,平成30年度河川災害 に関するシンポジウム資料, pp.17-32,2018.

津波氾濫水密度の簡易評価モデル*

秋田大学 松冨英夫

1.はじめに

松富らは津波荷重や歴史・想定津波規模評価の高度化を目指して、津波氾濫水密度ρの入射フル ード数F_nや土砂粒径(中央粒径d₅₀)への依存性を小規模移動床実験に基づいて検討している¹⁾⁻⁴⁾。 しかし、津波氾濫水密度の入射フルード数に対する上限の実験式を暫定的に提示し、中央粒径への 定性的依存性を言及するに止まっており、いまだに津波氾濫水密度に関する知見が限られている。 本研究は津波氾濫水密度の簡易評価モデルを新規に構築し、その評価モデルを上述の既報実験結

果に適用して、津波氾濫水密度を評価できるようにするとともに、その知見の充実を目的とする。

2. 簡易評価モデル

津波氾濫水密度の評価モデル構築の第一段階(簡易評価モデル)として,実験的検証の容易性から,土砂の断面平均濃度*C*_mを対象とし,掃流土砂と浮遊土砂に分離⁵⁾せず,全流送土砂で論じる。 土砂の密度を*ρ*_s,清水または海水の密度を*ρ*_w,単位幅・単位時間あたりの体積全流送土砂量を*q*_T,入射津波の氾濫水深を*h*_i,断面平均氾濫流速を*u*_i,底面せん断応力を*τ*_b,重力加速度を*g*とする。

単位幅・単位時間あたりの全流送土砂重量は,

$$(\rho_s - \rho_w)gq_T \tag{1}$$

摩擦速度をu*とすれば、入射氾濫流が底面の単位面積あたりにする仕事率は、

$$\tau_b u_* \propto \tau_b u_i \tag{2}$$

この仕事率により全流送土砂重量の輸送が維持されるので, c1を補正係数として次式が得られる。

$$(\rho_s - \rho_w)gq_T = c_1\tau_b u_i \tag{3}$$

一般的に定常流における流速係数u/u*は固定床下や移動床下に限らず1より大きく,氾濫流による底面への仕事率の全てが全流送土砂重量の輸送維持に費やされるわけではないので, c_1 は1より小さいと推定される。ただし,氾濫流(非定常流)における τ_b の評価法(採用する抵抗則)次第では, c_1 <1とならないことも考えられる(後述)。

土砂の断面平均濃度*C_m*(《1)を導入すれば、単位幅・単位時間あたりの体積全流送土砂量*q_T*は次式のように表現される。

$$q_T = C_m h_i u_i \tag{4}$$

したがって、式(3)と(4)から次式が得られる。

$$(\rho_s - \rho_w)gC_m h_i = c_1 \tau_b \tag{5}$$

移動床下の氾濫流の抵抗則は不明である。研究の余地がまだ多く残されているが、移動床下の定 常流のマンニングの粗度係数n (m,s単位)または摩擦損失係数fを導入すれば、 τ_b は次式のように表 現される。

$$\tau_b = \frac{\rho_w g n^2}{h_i^{1/3}} u_i^2 = \frac{1}{8} \rho_w f u_i^2 \tag{6}$$

ここで, 径深R≅h_iとしている。本来ならば, 式(6)においてはρ_wの代わりにρが採用されるべきであ

* A simple evaluation model for the density of tsunami inundation water by Hideo MATSUTOMI

図-1 既報の実験結果¹⁾⁻⁴⁾によく適合する式(8)の簡易評価モデル曲線(破線)とその場合のa値

る。ρを採用しても以下の理論展開に大きな問題はないが、本研究は簡易評価モデルを目指しているので、その影響をc₁に担わせることにする。したがって、式(5)と(6)から次式が得られる。

$$C_{m} = c_{1} \frac{\rho_{w}}{\rho_{s} - \rho_{w}} \frac{gn^{2}}{h_{i}^{1/3}} \frac{u_{i}^{2}}{gh_{i}} = c_{1} \frac{\rho_{w}}{\rho_{s} - \rho_{w}} \frac{gn^{2}}{h_{i}^{1/3}} F_{ri}^{2} = c_{1} \frac{f}{8} \frac{\rho_{w}}{\rho_{s} - \rho_{w}} F_{ri}^{2}$$
(7)

式(7)を氾濫水密度ρの定義式(式(8)の第1行目)に代入すれば、次式が得られる。

$$\rho = \rho_{w} \left\{ 1 + \left(\frac{\rho_{s}}{\rho_{w}} - 1 \right) C_{m} \right\}$$

$$= \rho_{w} \left(1 + c_{1} \frac{gn^{2}}{h_{i}^{1/3}} F_{ri}^{2} \right) = \rho_{w} \left(1 + c_{1} \frac{f}{8} F_{ri}^{2} \right) = \rho_{w} \left(1 + aF_{ri}^{2} \right)$$
(8)

ここで, aは次式である。

$$a = c_1 \frac{gn^2}{h_i^{1/3}} = \frac{gn_M^2}{h_i^{1/3}}$$

= $c_1 \frac{f}{8} = \frac{f_M}{8}$ (9)

式(8)から、氾濫水密度は入射フルード数に強く依存することが判る。式(9)の n_M (= $c_1^{1/2}n$)は「移動床下の氾濫流のマンニングの粗度係数」, f_M (= c_1f)は「移動床下の氾濫流の摩擦損失係数」と呼ぶべきもので、 c_1 は移動床下の氾濫流と定常流の流水摩擦の違いを示すものとも言える。

1. 簡易評価モデルの検証と諸係数の評価例

氾濫水密度に関する既報¹⁾⁻⁴⁾の実験結果を用いて,前章で提示した氾濫水密度に関する簡易評価 モデルの検証を行い, $a \approx n_M$, f_M , c_1 の評価例を示す。

3.1 簡易評価モデルの検証

図−1に氾濫水密度に関する既報¹⁾⁴⁾の実験装置毎(実験装置を毎年改良しており,実験実施年度 毎とも言える)の実験結果によく適合する式(8)の曲線(破線)とその場合のa値を示す。実験は年 度順に入射フルード数が小さくなるように行われている。図中の実線は実験値の上限を包絡する暫 定的な実験曲線である。図から,本簡易評価モデルは,年度毎の土砂粒径差が小さい条件下におい て,年度順に破線が上側に位置しており,実験結果を矛盾なく説明していることが判る。

図-2と3に式(8)が既報の実験結果によく適合する場合の $n_M \ge f_M$ の値および入射フルード数 F_{ri} (左図),中央粒径 d_{50} (中央),相対水深 h_i/d_{50} (右図)への依存性を示す。**図**-3の左図中の実線は暫定的な回帰曲線で、後述する。図から、実験データが少なく、その値域も狭いが、 $n_M \ge f_M$ は入射フルード数と中央粒径に依存し、入射フルード数と中央粒径が大きくなるにつれて小さくなることが判る。

図-2 本研究定義の移動床下の氾濫流に対するマンニングの粗度係数 n_M の入射フルード数 F_{ri} (左図), 中央粒径 d_{50} (中央),相対水深 h/d_{50} (右図) への依存性

図-3 本研究定義の移動床下の氾濫流に対する摩擦損失係数f_Mの入射フルード数F_{ri}(左図),中央粒径d₅₀ (中央),相対水深h_i/d₅₀(右図)への依存性

式(8)と(9)から理解されるように、 $n_M \approx f_M$ が小さくなれば、氾濫水密度も小さくなり、この傾向は実験結果と整合している。また、既報の実験範囲内では、 $n_M \approx f_M$ は h_i/d_{50} にあまり依存していないことが判る。参考までに、これまでの定常流実験に基づく知見では、移動床や固定床にかかわらず、 h_i/d_{50} が大きくなれば、摩擦損失係数、ひいてはマンニングの粗度係数は小さくなる⁶。

3.2 諸係数の評価例

移動床下の定常流の相当砂粒粗度 k_s として芦田⁷⁾やRijn⁸⁾などの研究成果を踏まえて $3 \times d_{50}$ ($12 \times d_{50}$ 程度になり得る⁸⁾),抵抗則として広矩形開水路定常流の粗面則や田中・サナ・川村⁹⁾の定常流に対 するもの(粗度高さとして k_s /33を使用)を採用すれば,摩擦損失係数fはそれぞれ次式から評価される。

$$\frac{8}{f} = \left(6.0 + 5.75 \log_{10} \frac{h_i}{3d_{50}}\right)^2 \tag{10.1}$$

$$\frac{8}{f} = \left\{ \frac{2 - \frac{33h_i}{2d_{50}} + 11\frac{h_i}{d_{50}} \ln\left(11\frac{h_i}{d_{50}}\right) - \frac{d_{50}}{22h_i}}{\kappa\left(11\frac{h_i}{d_{50}} - 1\right)} \right\}^2$$
(10.2)

例えば、式(8)と(10.1)から、補正係数c1として次式を得る。

$$c_{1} = \left(\frac{\rho}{\rho_{w}} - 1\right) \frac{h_{i}^{4/3}}{n^{2}u_{i}^{2}} = \left(\frac{\rho}{\rho_{w}} - 1\right) \frac{h_{i}^{1/3}}{gn^{2}F_{ri}^{2}} = \left(\frac{\rho}{\rho_{w}} - 1\right) \frac{8}{fF_{ri}^{2}} = \left(\frac{\rho}{\rho_{w}} - 1\right) \left(6.0 + 5.75\log_{10}\frac{h_{i}}{3d_{50}}\right)^{2} \frac{1}{F_{ri}^{2}}$$
(11)

図−4に既報¹⁾⁻⁴⁾の移動床下の氾濫流の実験結果に対して移動床下の定常流の抵抗則を仮定した場合の摩擦損失係数fの値および中央粒径d₅₀(左図)と相対水深h/d₅₀(右図)への依存性を示す。これらの結果は田中・サナ・川村の抵抗則を用いても基本的に同じであるが、田中・サナ・川村のfが少しだけ(本研究の実験では平均的に14%程度)大きめとなり、移動床下の氾濫流のf_M(後述)に少しだけ近づく。図−4の左図から、fは中央粒径にほとんど依存していないことが判る。これは図−3の中央図に示したものと値もさることながら変化傾向も異なり、移動床下の定常流に対する抵抗

図-4 移動床下の定常流に対する摩擦損失係数fの中央粒径d₅₀(左図)と相対水深h/d₅₀(右図)への依存性

則の採用が不適切であることを示している。**図-3**と4の両右図の比較から,移動床下の氾濫流にお ける f_M は大きくばらついているが,移動床下の定常流扱いにおけるfより平均的に2倍程度大きいこ とが判る(後述の**図-5**参照)。したがって, n_M は平均的にnの1.4倍程度ということになる。2倍や1.4 倍といった大差の傾向は固定床下の氾濫流の摩擦損失係数が固定床下の定常流のものに比べて大 きいこと¹⁰⁾と整合している。参考までに,移動床下の定常流の摩擦損失係数fは固定床下の定常流の ものに比べて小さいことが示されている⁶。ただし、これと逆傾向の実験結果が存在することも指 摘されている⁶。式(10.1)型の定常流に対する抵抗則を用いる限り、固定床下では $k_s \cong d_{50} (<3d_{50})$ を使 用することになり, h_i が同じ場合は固定床下のfが(本研究の実験では平均的に28%程度)小さくなる。

図-5に式(8)が既報の実験結果によく適合する場合の補正係数 c_1 の値および入射フルード数 F_{ri} (左図),中央粒径 d_{50} (中央),相対水深 h_i/d_{50} (右図)への依存性を示す。**図**-5の左図中の実線は d_{50} の影響を無視した場合の暫定的な回帰曲線で、次式である(相関係数R=0.85)。

$$c_1 = 5.7 F_{r_i}^{-0.82} \tag{12}$$

図から, c₁はいずれの実験ケースにおいても1より大きいことが判る。これは当初の予想と異なる。 この主な理由として, 図-4に対する考察のところで述べたように,本研究対象の流れが定常流でな く,氾濫流であることが考えられる。換言すれば,氾濫流の場合に式(10.1)型の定常流に対する抵 抗則を採用していることが考えられる。氾濫流と定常流における結果の違いは摩擦損失係数やc₁, ひいては氾濫水密度に限ったことではない¹¹⁾。また, c₁は入射フルード数や中央粒径が大きくなれ ば小さくなること,相対水深にあまり依存していないことも判る。

3.3 氾濫水密度の簡易評価法

土砂粒径(中央粒径 d_{50}),入射津波の氾濫水深 h_i と氾濫流速 u_i ,ひいては入射フルード数 F_{ri} は既知 とする。

式(8)と(9)から理解されるように、 n_M または f_M を評価できれば、氾濫水密度も評価できる。これらの評価手順は次の通りである。

Step 1:式(10.1)から移動床下の定常流の摩擦損失係数fを評価する。

Step 2:式(12)から c_1 を評価する。式(12)の使用は土砂粒径の影響の一部を切捨てたことになる。

Step 3:式(9),(10.1),(12)から得られる式(13)を用いてf_Mを 評価する。必要であれば、その評価したf_Mと式(9) からn_Mを評価する。

$$f_M = c_1 f = 45.6 \left(6.0 + 5.75 \log_{10} \frac{h_i}{3d_{50}} \right)^{-2} F_{ri}^{-0.82}$$
(13)

Step 4:式(8), (9), (13)から氾濫水密度 pを評価する。

図-6に氾濫水比重(または密度)に関する実験値とモデル評価値の比較を示す。図から、当然のことながら両者はよく一致しており、本研究の簡易評価モデルは有用であることが判る。

氾濫流の非定常性は千差万別である。上述した Step 2 における式(12)は既報実験の氾濫流のみに適用できるものである。式(13)の適用度は非定常性の程度次第で悪くなるかもしれない。

ところで、相対粗度k_s/Rに関して水面勾配(=動水勾配)Iを用いて次の経験式が提案されている¹²⁾。

$$\frac{k_s}{RI} \cong \frac{k_s}{h_i I} \cong 1.8 F_{r_i}^{-2.25} \tag{14}$$

また、摩擦損失水頭の評価式から次式が得られる。

$$I = \frac{f}{8}F_{ri}^2 \tag{15}$$

したがって、式(14)と(15)から次式が得られる。

$$\frac{k_s}{h_i} \approx 1.8IF_{r_i}^{-2.25} = \frac{9}{40}fF_{r_i}^{-0.25}$$
(16)

式(10.1)と(16)から理解されるように,移動床下の定常流の摩擦損失係数fは陰関数表示となるが,入射フルード数Friのみ(土砂粒径の影響を無視)から近似的に評価される。したがって,式(13)ではなく, f_Mの回帰式を直接導出するより簡便な方法も考えられる。

例えば、式(8)と(9)から次式を得る。

$$f_{M} = 8 \left(\frac{\rho}{\rho_{w}} - 1 \right) \frac{1}{F_{ri}^{2}}$$
(17)

図-1に示した氾濫水密度に関する既報¹⁾⁻⁴⁾の実験結果に対する暫定的な回帰曲線(*R*=0.95)と上限曲線⁴⁾(図-1中に表示)はそれぞれ次式である。

$$\left(\frac{\rho}{\rho_w} - 1\right) = 0.027 F_{ri}^{1.10}$$
(18)
$$\left(\frac{\rho}{\rho_w} - 1\right) = 0.056 F_{ri}^{0.7}$$
(19)

式(17)と(18)から次式を得る。

$$f_M = 0.216 F_{ri}^{-0.90} \tag{20}$$

式(20)が式(13)に代わるもので、図-3の左図中に実線で示されている。当然のことであるが、式(20) はf_MとF_nのデータから直接求めた回帰式と一致する。

式(17)と(19)から次式を得る。

$$f_M = 0.448 F_{ri}^{-1.3} \tag{21}$$

式(21)は移動床下の氾濫流における氾濫水密度の上限に対する経験的な抵抗式(暫定)と呼ぶべき もので、実際的な入射フルード数の範囲内であれば式(13)や(20)より大きな値を与える。

図-7に摩擦損失係数f_Mの評価式(13), (20), (21)の既報実験条件下¹⁾⁴⁾での比較を示す。図から,式

(13)と(20)がほぼ一致していることが判る。これは 実験毎の土砂粒径差が小さいためと考えられる。

4.おわりに

本研究で得られた主な結果は次の通りである。

- (1)氾濫水密度ρは入射フルード数F_{ri}と土砂粒径 (中央粒径d₅₀)に依存し,土砂粒径が大きくなれ ば,小さくなることを理論的に示した。後者の 傾向は既報の実験結果と一致している。
- (2)本研究定義の移動床下の氾濫流の摩擦損失係 数f_Mとマンニングの粗度係数n_Mの値を例示した。 これらの値はそれぞれ移動床下の定常流扱いに よるものの平均的に2倍と1.4倍であった。

図-7 本研究定義の摩擦損失係数f_Mの評価式(13), (17), (18)の既報実験条件下での比較

- (3)移動床下の定常流の相当砂粒粗度 k_s として $3 \times d_{50}$,抵抗則として既存の広矩形開水路定常流の粗面 則を採用し、これらから得られる摩擦損失係数f(式(10.1)。**図**-4の右図)を c_1 倍して f_M (式(13)。 **図**-3の右図)、必要であればマンニングの粗度係数n(式(9))を $\sqrt{c_1$ 倍して n_M (**図**-2の右図)を評 価して、式(8)から氾濫水密度を評価する方法(簡易評価モデル)を提示した。
- (4)土砂の断面平均濃度C_m(∞氾濫水密度)を測定する実験(推定する現地調査¹³)を実施するならば、 本研究提示の方法は津波氾濫流に限らず土砂を含むいろいろな氾濫流に適用可能と考えられる。

謝辞:本研究の遂行にあたり科学研究費(基盤研究(C),17K01320)(代表:松冨英夫)の補助を受けた。ここに記して謝意を表する。

参考文献

- 1) 松冨英夫,川島 峻: 津波氾濫流の密度に関する基礎実験,土木学会論文集B2(海岸工学), Vol.71, No.2, pp.355-360, 2015.
- 2) 松冨英夫, 今野史子, 齋川 聖, 鎌滝孝信, 渡邉一也:津波氾濫水密度の土砂堆積や遡上高への影響, 土木学会論文集B2(海岸工学), Vol.72, No.2, pp.397-402, 2016.
- 3) 松冨英夫,今野史子,後村晃基,今藤晃太,鎌滝孝信,渡邉一也:津波氾濫水密度とその遡上距離や 土砂堆積への影響に関する定量実験,土木学会論文集B2(海岸工学), Vol.73, No.2, pp.373-378, 2017.
- 4) 松冨英夫,岡田隼人,久保田友寛,今野史子: RC造建築物に作用する津波荷重の氾濫水密度への依存に関する基礎実験,土木学会論文集B2(海岸工学), Vol.74, No.2, pp.265-270, 2018.
- 5) 例えば,高橋智幸,首藤伸夫,今村文彦,浅井大輔:掃流砂層・浮遊砂層の交換砂量を考慮した津波 移動床モデルの開発,海岸工学論文集,第46巻,pp.606-610,1999.
- 6) 楊永荻, 平野宗夫, 羽田野袈裟義: 平坦な移動床流れの抵抗則, 水工学論文集, 第39巻, pp.483-488, 1995.
- 7) 芦田和男:河道の設計法 一河川の粗度について(4)-, 土木技術資料, 第1巻7号, pp.8-11, 1959.
- Van Rijn L. C.: Equivalent roughness of alluvial bed, Journal of Hydraulic Division, Proc. of ASCE, Vol.108, No.HY10, pp.1215-1218, 1982.
- 9) 田中 仁, アーマド・サナ, 川村育男: 波動境界層の準定常性に関する理論および実験, 土木学会論 文集, No.593, II-43, pp.155-164, 1998.
- 10) 松冨英夫:ダム破壊等に伴う急速な氾濫に関する水理学的研究,東北大学博士論文, p.198, 1988.
- 11) 例えば,松富英夫,小泉拓也,照井裕介,加藤広之,岩瀬浩之:定常と非定常実験の違いが胸壁越流 後の津波の氾濫流やRC造建築物への波力に及ぼす影響,土木学会論文集B1(水工学), Vol.74, No.5, pp.1225-1230, 2018.
- 12) Kikkawa, H. and S. Fukuoka: Characteristics of open-channel flow with sediment, 東京工業大学土木工学科研究報告, No.10, 1971.
- 13) 松冨英夫,鎌滝孝信:2018年7月西日本豪雨における真備町氾濫域の土砂堆積と氾濫水密度の概算, 東北地域災害科学研究,第55巻,2019.(印刷中)

下北半島西部、大間町奥戸におけるイベント堆積物調査

弘前大学理工学部 村上正能・岡田里奈・梅田浩司 秋田大学地方創生センター 鎌滝孝信

1. はじめに

近年,異常気象などによる自然災害が多発しており,2018年も西日本豪雨災害,台風21号 による強風・高潮被害,北海道胆振東部地震による表層崩壊などの甚大な被害が発生した。こ うした自然災害による被害は,自治体や住民にとって非常に重要な課題であり,防災・減災意 識を高めていくためにも,過去に発生してきた災害の種類や頻度,規模などの情報を,古文書 などの歴史資料に加えて科学的な証拠を併せて示すことが重要となる。このうち,過去の地 震・津波の証拠については,津波堆積物に関する調査・研究によって明らかにされてきてお り,国内外で数多くの報告がなされている。日本海沿岸においては過去に発生した津波の痕跡 が識別されている(例えば,鎌滝,2016)。東北北部の西津軽においては岡田(2018)が十三 湖五月女萢地区において1741年に発生した渡島大島の海底地すべりを起源とする津波堆積物 を報告しており,青森県の日本海側にも津波が到来したことが確認できる。また,羽鳥

(1984)によると1741年渡島大島津波は、北海道渡島半島から秋田県の男鹿半島にまで達していることから、青森県においても津軽半島のみならず下北半島にも到来している可能性がある。

下北半島におけるイベント堆積物については、太平洋側の下北郡東通村において標高 5m 以 上まで分布する津波堆積物が確認されており、これらは西暦 1611 年慶長三陸地震、あるいは 17 世紀に千島海溝で起こった連動型地震に由来するものと考えられている(Tanigawa et al., 2014)。一方、半島西部ではいくつかの古地震の記載がある史料(例えば、1588 年の大地震; むつ市史編纂委員会編、1988)はあるものの、これまで津波堆積物は見つかっていない(電源 開発株式会社、2017)。筆者らは下北半島西部の大間町奥戸においてイベント堆積物の調査を 行なった。その結果、沖積低地の粘土~シルト層の中にイベント層と考えられる砂層を見出し た。今回は、このイベント層の特徴や成因について報告する。

2. 調查地域·調查方法

奥戸川流域の沖積低地の標高は 2~5m 程度であり,津波の遡上によって運ばれた砕屑物が 堆積しやすい環境である(図1)。なお、同地域におけるこれまでボーリング調査によって 2500~7500 年前の3 枚の洪水起源と考えられる砂層(Eok①層,Eok②,及び Eok③層)が報告 されている(電源開発株式会社,2017)。調査はハンドコアラーによって12 試料、ハンディジ オスライサーを用いて5 試料の計19 のコア試料を採取した。なお、ハンディジオスライサー は、ハンドコアラーによって予め層相の変化が著しい地点や泥層に挟まれる薄い砂層が確認さ れた地点において、幅10cm、厚さ3cm、深さ2mまでのブロックサンプルを定方位で採取し た。また、コア試料内のイベント堆積物を構成する砕屑粒子の起源を検討するために、調査地

A study of event deposits in coastal lowland on the western coast of Shimokita Peninsula by Masayoshi Murakami, Rina Okada, Koji Umeda, Takanobu Kamataki

域を流れる奥戸川河口付近の海岸から海砂を,奥戸川中流域から河川砂を採取した。採取した コア試料および河川砂,海砂は実体鏡及び偏光顕微鏡での検鏡観察,粒度分析,EPMA(電子 線プローブマイクロアナライザ)によるガラス,鉱物化学組成の分析を行い,イベントの同定 や当時の堆積環境,形成年代等について検討した。

図1 調査位置図 A:青森県下北半島 B:大間町周辺 C:コア試料掘削地点

3. コア試料の層相観察

採取したコア試料のほとんどが粘土を主体とし、細粒から中粒砂サイズの砂層が挟まれている。ここでは代表的な試料として地点11で得られた試料を記載する。コア試料はジオスライサーで深度2.00mまで採取した。地表面から深度0.27mまでは耕作土からなる。深度0.27~1.03mまでは粘土からなる。深度1.03~1.10mまでは細粒砂混じりの粘土からなる。深度1.10~1.34mまでは細~中粒砂を主体とし、まれに砂サイズの軽石が含まれる。深度1.34~2.00mまでは粘土からなる。

4. 分析結果

地点 11 の深度 1.20m の砂層,奥戸川河口付近の海砂,奥戸川中流域の河川砂の実体鏡写真 を図 2 に示す。地点 11 の砂層は斜長石を主体とし、斜方輝石、単斜輝石、火山ガラス、燐灰 石、軽石、ジルコン、岩片、少量で褐簾石と石英を含んでいる。海砂は斜長石と石英を主体と し、斜方輝石、単斜輝石、岩片を含んでおり、砕屑粒子が良く円磨されていることを特徴とす る。河川砂は斜長石を主体とし、斜方輝石、単斜輝石、燐灰石、岩片、少量の火山ガラスと石 英を含む。砕屑粒子の鉱物組成は地点 11 の砂層と河川砂の特徴が類似している。

図2 地点11の砂層の砂,奥戸川砂と海砂の写真

粒度分析は SHIMADZU 製のレーザ回折式粒度分布測定装置 SALD-3000J によって行なった。コア試料については深度 1.10, 1.15, 1.20, 1.25, 1.30m の砕屑粒子および海砂,河川砂 の粒度分析を行った。分析結果を図 3,4 に示す。地点 11 の砂層は中粒砂付近に弱いピークが あるものの,粘土・シルト成分を含み全般的に淘汰が悪い。海砂については 0.5mm 付近に明 瞭なピークを有しており,淘汰は良い。これに対して,河川砂の粒径は 1µm~1mm まで幅広 く分布しており,淘汰が悪く,砂層の粒径分布に類似している。

図3 地点11(深度1.10~1.30m)の粒度分析結果(一粒度分布曲線,一積算分布曲線)

図4 河川砂と海砂の粒度分析(一粒度分布曲線,一積算分布曲線)

図5は海側から陸側の地点の柱状図および砂層を対比したものである。砂層は陸側に向かって厚くなり,海側に向かっては地点1で消滅する。以上のことから,奥戸地区の沖積低地の粘土層に挟まれる砂層は,奥戸川の上流から供給された砕屑粒子によって形成された可能性が高く,現時点では洪水イベントによる堆積物と考えられる。

図5 柱状図の対比

5. EPMA 分析

今回識別したイベント堆積物の形成年代を明らかにするため、堆積物中の軽石について EPMAによる主成分分析を行なうとともに、広域テフラとの対比を行った。分析は日本電子製 のEPMA(JEOLJXA-8230)によって、加速電圧を15kV,照射電流を 6.00×10^{-9} A,ビーム径 を 3~5µm で測定した。主成分分析はSiO₂,TiO₂,Al₂O₃,FeO,MnO,MgO,CaO,Na₂O, K₂Oの9成分を定量し、各元素の合計は無水に換算して100%とした。図6にはSiO₂とNa₂ O,K₂Oの相関を示す。また、図6には下北半島に降下した可能性が高い十和田a(To-a),+ 和田b(To-b)、白頭山苫小牧(B-Tm)、洞爺(Toya)の各テフラの化学組成の範囲を併せて示 した。なお、それぞれのテフラの年代は、十和田aは915年、十和田bは2550±20BP、白頭 山苫小牧は10世紀、洞爺は11.2~11.5万年前である。軽石のNa₂Oは2.5~3.5(wt%)、K₂Oは 3.5~4.0(wt%)であるが、今回検討した4つの広域テフラのどれとも対比はできなかった。

図 6 イベント層内の軽石のハーカー図 (Na₂O, K₂O)

6. まとめ

イベント堆積物がもつ堆積相,構成鉱物などの特徴から解釈すると,大間町奥戸地区に見 られるイベント堆積物は洪水起源と考えられ,津波起源のイベント堆積物である可能性が低い と考えられる。またイベント堆積物内の軽石については今回特定ができなかったため今後の課 題としていく。

謝辞

本研究において弘前大学理工学研究科の柴正敏名誉教授には EPMA 分析の指導をいただい た。また,秋田大学理工学部の宇内滉志氏には現地調査の際にお世話になった。記して感謝申 し上げます。

参考文献

谷川晃一朗:青森県六ヶ所村平沼における津波堆積物調査 活断層・古地震研究報告,

No17, p.1-14, 2017

電源開発株式会社:第467回原子力発電所の新規制基準適合性に係る審査会合2017年5月 鎌滝孝信・高渕慎也・松冨英夫・阿部恒平・黒澤英樹:秋田県男鹿市および八峰町における津 波堆積物調査 土木学会論文集 B2(海岸工学),72,2,I_1693-I_1698,2016 むつ市史編さん委員会 1988年12月 むつ市史年表編 町田洋 新井房夫 著(2003) 新編火山灰アトラス [日本列島とその周辺],東京大学出版

|津軽半島,十三湖周辺に認められる津波と液状化の痕跡^{*}

弘前大学理工学研究科 岡田 里奈・梅田 浩司

秋田大学地方創生センター 鎌滝 孝信

1. はじめに

突発的な事象(津波,洪水や高潮など)により地質学的な時間スケールに比べて瞬時に形成された堆積物をイベント堆積物という。このうち,津波堆積物はイベント堆積物の一種であり,津 波またはそれから派生した水流によって海底や沿岸の砂泥や礫などが侵食され,それらが別の場 所へ運搬されて再堆積したものの総称と定義されている(例えば,澤井,2012)。津波堆積物の 分布調査や年代測定によって当時の浸水範囲や発生時期などが明らかにされるが,これらの情報 は将来の地震・津波ハザード評価に反映することができる。東北地方の日本海沿岸では,秋田県 にかほ市,秋田県潟上市(鎌滝ほか,2015,2016)や青森県鰺ヶ沢町(熊谷ほか,2017)の沿岸 域においてイベント堆積物が見出されている。筆者らは昨年度から鰺ヶ沢町より北方約25kmに 位置する五所川原市五月女萢(そとめやち)においてイベント堆積物の調査を行なってきた。そ の結果,液状化痕を侵食する津波堆積物を発見したので,今回はそれについて報告する。

Figure 1 左:津軽半島全体,中央:十三湖周辺,右:調査地域周辺 (Google Earth より)

2. 調査地域および調査方法

調査地域である五月女萢には、浜堤に沿って南北に延びる小河川が存在し、汽水湖である十三 湖に注いでいる。この小河川に沿って標高 1.0~1.6m の低地が広がっており、津波が発生した際 に遮るものがなく、海域からの物質輸送に伴う堆積作用が生じる可能性が高い(Figure 1)。調査 はジオスライサーを用いて幅 10cm、長さ 200cm、厚さ 3cm のブロックサンプルを定方位で採取 した。試料は小河川の河口から約 250m 地点からさらに上流に向かって約 20m 間隔、合計 15 箇 所で採取した(Figure 2)。さらに、南北方向に約 7m、東西方向に約 5m、深さ約 2.5m のトレン

*Traces of tsunami and liquefaction recorded around the Lake Jusan, Tsugaru Peninsula by Rina Okada, Koji Umeda and Takanobu Kamataki チを2箇所(小河川の河口から約270mおよび約300m地点)で掘削し,壁面観察,剥ぎ取りな どを行った。イベント堆積物を識別するため層相観察・記載,砂質堆積物の検鏡観察・粒度分析 などを行った。また,イベント堆積物の年代を決定するため,試料に含まれる木片や植物片など について放射性炭素年代測定(¹⁴C年代測定)を併せて実施した。

Figure 2 A:調査地域周辺, B:ボーリング地点およびトレンチ地点

3. 結果·考察

Figure 3 トレンチ壁面 トレンチでの壁面観察(Figure 3)によると,地表から約 85cm までは盛土や耕作土からなる。そ

こから深度 85~90cm は泥炭層, 深度 90~100cm は有 機質シルト混じりの中粒砂層, 深度 100~105cm は有 機質シルト層, 深度 105~125cm は細粒~粗粒砂層, 深度 125~135cm は泥炭層, 深度 135cm 以深は中粒砂 層となっている。このうち深度 105~125cm の砂層

(Figure 4) には次のような特徴がある。1) 下位の 泥炭層との侵食面が明瞭である,2) 上部には植物片 が含まれ,下部には偽礫(リップアップクラスト) がみられる,3) 砂層は薄い泥層(マッドドレイプ) を境に2つのユニットに分けられる,4) 平行層理や 斜交層理が発達する,5) 層厚が南側から北側に向か って徐々に薄くなり,消滅する,6) 砂の鉱物組成や 形態が十三湖の海浜砂と類似する。これらを踏まえ ると,この砂層は海側からの砕屑物の供給によって 生じたイベント堆積物であると考えられる。さらに,

このイベント堆積物を 1cm 間隔でサンプリングして 粒度分析を行った結果,2 つのユニットともに上方

Figure 5 津波堆積物と噴砂

Figure 4 深度 105~125 cmの砂層

細粒化(下部は粒径 1.0mm にピークを有する単峰性を示すことに対し,下層の上部は粒径 10 µmと 0.5mm にピークを有する二峰性を示す)している。以上のことから,2 つの上方細粒化する砂層の ユニットは海側からの2 回の遡上流によって,マッドドレイプは遡上流が停滞した際に形成された 堆積物と考えられる。これらのことから,深度 105~125cm の砂層は津波堆積物と判断した。

一方,深度 125~135cm の泥炭層には小規模ながら多くの噴砂痕や荷重痕が認められる (Figure 6)。 その下位の砂層の中粒砂が泥炭層を砂脈として貫き,噴砂が泥炭層を覆っている。また,この泥炭 層からはヤマトシジミの化石が含まれる。噴砂痕の存在は,この地域が強い揺れに襲われ,液状化 が生じたことを意味する。また,荷重痕は津波堆積物が覆った泥炭層には流動性があったこと,ヤ

> マトシジミの化石が泥炭層に含まれることか ら,津波堆積物の堆積環境は湖底であったこ とが示唆される。さらに,液状化で生じた噴 砂を津波堆積物が侵食していることから

(Figure 5),液状化が生じたのは津波が襲来する前であった。

次に,このイベント(津波)を決定するため に,深度 85~90cm および深度 100~105cm から 採取した植物片,深度 125~135cm から採取し たヤマトシジミの化石の¹⁴C 年代測定を行っ

マトシジミの化石より AD1392~1443 という値を得た (Table 1)。ヤマトシジミの年代については, 海洋リザーバー効果の影響を考慮する必要があるが,十三湖は汽水環境であり正確なリザーバー年 代を決定することは困難である。ただし,一般的に海産試料と陸上試料の年代差が約 400 年と考え られていることから (Reimer et al.,2013),深度 125~135cm の堆積物の年代は AD1800 年頃以前であ ると判断できる。これまでの日本海側の古地震・古津波研究によると (例えば,川上ほか,2017), この堆積物に相当するイベントは 1741 年に発生した渡島沖津波の可能性が高い。なお,羽鳥(1984) によるとこの津波による十三湖付近の波高は 5~6m と推定されており,1983 年日本海中部地震のそ れを上回るとされている。

Figure 6 A: 全体, B: 荷重痕, C: 噴砂痕

	放射炭素年代	暦年較正値
深さ85~90cm(植物片)	60 ± 30	1811-1920calAD
深さ100~105cm(植物片)	210±30	1726-1814calAD
深さ 125~135㎝ (ヤマト シジミ の化石)	520 ± 30	1392-1443calAD

Table 1 放射性炭素年代測定結果

1741 年渡島沖津波は津波地震ではなく,渡島大島の噴火・山体崩壊・海底地すべりによって生じたと考えられている(例えば,Satake,2007)。しかしながら,弘前藩庁日記によると噴火開始から山体崩壊までの10日間には津軽地方にも規模の大きい地震が頻発していたらしい。したがって, 津波堆積物の下位にみられる液状化痕は,これらの渡島大島に由来する火山性地震によって生じた可能性は否定できない。

4. まとめ

これまでのジオスライサーによるボーリング調査では、津波由来のイベント堆積物(津波堆積物) であること、津波堆積物の直下に噴砂痕がみられること、十三湖に注ぐ小河川の河口から約 450m 津波が遡上したことなどが確認された。しかし、津波堆積物と噴砂の切断関係、当時の調査地域の 環境、津波堆積物の年代が不明であったが、今回のトレンチ調査により明らかになった。

謝辞

本研究には、科学研究費(基盤研究(C)、17k01321)(代表:鎌滝孝信)を使用した。青森県五 所川原市役所の方々には、現地調査等でお世話になった。ここに記して関係各位に感謝します。

引用文献

ー木絵里・辻誠一郎・杉山陽亮・村木 淳・宇部則保・中村俊夫:青森県八戸市の縄文時代早期貝塚出土試料の¹⁴C年代と海洋リザーバー効果,第四紀研究,54,5,271-284p,2015.

- 鎌滝孝信・阿部恒平・黒澤英樹・三輪敦士・今泉俊文:秋田県沿岸の沖積低地にみられるイベント 堆積物,第四紀研究, 54, 129-138p, 2015.
- 鎌滝孝信・高渕慎也・松冨英夫・阿部恒平・黒澤英樹:秋田県男鹿市および八峰町における津波堆 積物調査,土木学会論文集 B2(海岸工学),72,2,1 1693-I 1698p,2016.
- 鎌滝孝信・安部訓史・金沢 慎・松冨英夫:秋田県南部の沿岸低地における過去の津波浸水域および履歴の検討,土木学会論文集 B2(海岸工学),73,2,I 445-I 450, 2017.
- 川上源太郎・加瀬善洋・ト部厚志・高清水康博・仁科健二:日本海東縁の津波とイベント堆積物, 地質学雑誌,123,10,857-877p,2017.

Kenji Satake : Volcanic origin of the 1741 Oshima-Oshima tsunami in the Japan Sea, Earth Planets Space,

59, 381-390, 2007.

澤井祐紀:地層中に存在する古津波堆積物の調査,地質学雑誌,118,9,535-558p,2012.
 羽鳥徳太郎:北海道渡島沖津波(1741年)の挙動の再検討—1983年日本海中部地震津波との比較
 ―,地震研究所彙報,59,115-125p,1984.

Paula J Reimer • Edouard Bard • Alex Bayliss • J Warren Beck • Paul G Blackwell • Christopher Bronk Ramsey • Caitlin E Buck • Hai Cheng • R Lawrence Edwards • Michael Friendrich • Pieter M Grootes • Thomas P Guilderson • Haflidi Haflidason • Irka Hajdas • Christine Hatte • Timothy J Heaton • Dirk L Hoffmann • Alan G Hogg • Konrad A Hughen • K Felix Kaiser • Bernd Kromer • Sturt W Manning • Mu Niu • Ron W Reimer • David A Richards • E Marian Scott • John R Southon • Richard A Staff • Christian S M Turney • Johannes van der Plicht : INTCAL13 AND MARINE13 RADIOCARBON AGE CALIBRATION CURVES 0-50,000 YEARS CAL BP, RADIOCARBON, 55, 4, 1869-1887p, 2013.

2018年7月西日本豪雨時の富山県内の気象・防災情報に関して*

呉 修一 富山県立大学 環境・社会基盤工学科

1. はじめに

日本の各地で毎年のように洪水氾濫等の水害が発生している. 2018 年 7 月の西日本豪雨では,死者が 224 名,行方不明が8名(消防庁,2018 年 11 月 6 日現在)と平成の時代で最悪の被害が生じた.西日本豪雨後に,防災学術連携体は西日本豪雨・市民への強い緊急メッセージ「あなたには災害の危険性を知る義務と,自分と 家族を守る責任があります」を発信している(2018 年 7 月 22 日の記者発表).中央防災会議(2018)は,住民 は「自らの命は自らが守る」意識を持ち適切な避難行動等を行い,行政は住民が適切な避難行動をとれるよう 全力で支援を行うよう,提言している.

著者らのグループは、2015年9月関東・東北豪雨(呉ら、2016a,b)、2016年岩手豪雨(森口ら、2018)での 豪雨災害等,東北地方の水害後に現地調査やその後の解析などに従来から従事している. Sato et al. (2017)で は、水害時に利用できるウェブ上の情報を整理することで、災害情報を活用するには、1) どこに、どんな情報 があるかを事前に把握しておくという情報リテラシー、もう一つは、2) その情報が何を意味して、どのように 使うのかという情報リテラシーの二つが必要であることを明らかにしている.また、呉ら(2019)は、住民を 対象としたアンケート調査等を行い、住民の防災情報への理解度等を明らかにしている.

本論文では、2018年7月の西日本豪雨時の、富山県の気象情報、特に、高解像度降水ナウキャスト、土砂災 害警戒判定メッシュ情報、大雨警報(浸水害)の危険度分布、洪水警報の危険度分布の4つに着目し、これら の情報がどのような状況を示していたか等を明らかにする.

2. 2018年西日本豪雨の概要と富山県の被害状況

2018年7月西日本豪雨の際,富山県内では、7月4日の降り始めから8日24時までに継続的に雨が降り,総降雨量は多いところで400mmを超える大雨となった.神通川上流域など岐阜県に属する個所では、例えば、小鳥峠観測所(岐阜県高山市)にて、7月4日0時から8日24時までの総雨量680mm、2日雨量412mmを記録したほか、流域内の複数観測所で、既往最大より約1.2倍~1.3倍の2日雨量を記録し、観測史上第1位を更新した(神通川堤防調査委員会、2018).

富山県内では、富山、魚津、滑川、立山、上市、舟橋の6市町村が、計約9万1千人を対象に「避難準備情報・高齢者避難開始」を発令し、227人が実際に避難をしている(富山新聞、2018). 県内の中小河川では、白岩川、大岩川、上市川、栃津川、坪野川、片貝川で避難判断水位に達した. 1 級河川では、神通川、黒部川、 庄川、小矢部川でレベル2の氾濫注意水位を超えている(北日本新聞社、2018). 一例として、図-1、図-2 に、 岐阜県の高山を源流とし富山市内を流れる1級河川神通川の、神通大橋地点および大沢野大橋地点における水 位の時系列を示す. 神通大橋地点において、観測史上第2位の水位(ピーク水位:7.22m)を観測している. ちなみに観測史上第1位は、平成16年10月の台風第23号の出水(ピーク水位:8.33m)である. 大沢野大 橋水位地点では、7月6日1:00に避難準備・高齢者等日案開始の目安となるレベル3の避難判断水位を超過し ている. この豪雨により神通川では左岸22.4k付近で堤防欠損が生じるなどの被害が生じている.

^{*}Disaster and meteorological information issued in Toyama prefecture during rainfall event in July 2018, Shuichi Kure

3. 気象・防災情報の概要

本論文では気象・防災情報として、気 象庁 HP でリアルタイムで公開されてい る、「高解像度降水ナウキャスト」、「土砂 災害警戒判定メッシュ情報」、「大雨警報 (浸水害)の危険度分布」、「洪水警報の 危険度分布」の4つに着目する.

「高解像度降水ナウキャスト」は、気 象ドップラーレーダーの観測データに 加え、気象庁・国土交通省・地方自治体 が保有する全国の雨量計データ、ウィン ドプロファイラやラジオゾンデの高 層観測データ、国土交通省のXバンド レーダのデータを活用し、降水域の内 部を立体的に解析して、250m 解像度の 降水分布を 30 分先まで予測している (気象庁 HP).

「土砂災害警戒判定メッシュ情報」 は、大雨による土砂災害発生の危険度 の高まりを、地図上で5km四方の領域 ごとに5段階に色分けして示す情報で あり、避難にかかる時間を考慮して、 危険度の判定には2時間先までの雨量 及び土壌雨量指数の予測値を用いて いる(気象庁HP).

「大雨警報(浸水害)の危険度分布」は、大雨警報(浸水害)を補足する情報である。 短時間強雨による浸 水害発生の危険度の高まりの予測を示しており、大雨警報(浸水害)等が発表されたときに、どこで危険度が 高まるかを面的に確認することができる。1時間先までの表面雨量指数の予測値が大雨警報(浸水害)等の基 準値に到達したかどうかで、危険度を5段階に判定し、色分け表示する(気象庁 HP)。

「洪水警報の危険度分布」は、洪水警報を補足する情報である. 指定河川洪水予報の発表対象ではない中 小河川(水位周知河川及びその他河川)の洪水害発生の危険度の高まりの予測を示しており、洪水警報等が発 表されたときに、どこで危険度が高まるかを面的に確認することができる.3時間先までの流域雨量指数の予 測値が洪水警報等の基準値に到達したかどうかで、危険度を5段階に判定し、色分け表示している(気象庁 HP). 上記情報の詳細に関しては、気象庁 HP等を確認されたい.

図-3に、これらの2018年7月5日12:00-18:00における時系列変化を示す.強い雨域が富山県に停滞していることがわかる.この強降雨により、全域の土砂災害警戒判定、富山市内の浸水害の危険度分布,富山県内全域の洪水警報の危険度分布の危険度が徐々に上昇していることがわかる.浸水害は表面雨量指数を用いたものであり、都市域の内水氾濫や冠水の危険度と理解すべきと考えられる.

図-3 2018 年 7 月 5 日 12:00-18:00 の高解像度降水ナウキャスト, 土砂災害警戒判定メッシュ情報, 大雨警報(浸水害)の危険度分布,洪水警報の危険度分布の時系列

図-3 2018年7月5日16:00-17:00の洪水警報の危険度分布の時系列(拡大版)

ここで図-4に、洪水警報の危険度分布を拡大したものを示す.上述したように、県内の中小河川では、白岩 川、大岩川、上市川、栃津川、坪野川、片貝川で避難判断水位に達している.洪水警報の危険度分布では、ピ ーク時(17:00)に、栃津川が非常に危険(紫色)から極めて危険(濃い紫色)と示されている.また、白岩川 も非常に危険(紫色)から警戒(赤色)で示されている.大岩川、上市川、坪野川、片貝川も警戒(赤色)で 示されている.栃津川、白岩川が危険な状況であることは容易に理解できる反面、赤色の河川では紫色に比べ て危険度が低いと勘違いする可能性もありえる.しかしながら、全体としてこのような中小河川の洪水の危険 度を良好に表現できていると見ることができ、有益な情報と考えられる.

このように、気象庁から公表されている洪水警報の危険度分布は、中小河川の豪雨時の危険度を理解するう えで有効な情報となりえる.当然であるが、流域雨量指数の予測値に基づいたものであり、不確実性が存在す る点があり、他の複数の大小の出水ケース、他の地域等で更なる検証が必要不可欠である点は注意されたい.

しかしながら,著者らの調査結果(呉ら,2019)では、上記の情報が存在し利用可能であることを知っている地域住民の数は極めて少なく、今後これらの存在や利用方法などを広くわかりやすく周知することも重要となってくるであろう.
4. 今後の減災に向けた取組

高頻度災害である洪水氾濫や土砂災害は毎年のように生じ、今後も温暖化等の影響により規模・頻度の更な る増加が懸念される.平成30年7月西日本豪雨からの提言(中央防災会議,2018)では、マルチハザードの リスク認識、防災気象情報・避難情報の伝達手段の強化や防災情報の5段階レベルでの表現、市町村職員の情 報発信の負担の軽減等が今後の避難促進対策として提言されている.以下、著者が今後必要と感じている取り 組みに関して列挙する.

マルチハザードや可能最大洪水氾濫の推定:

平成27年に水防法が一部改正され、最大規模の洪水・内水・高潮への対策が必要となり、洪水に係る浸水 想定区域について、想定しえる最大規模の洪水に係る区域に拡充して公表することとなった.このように、計 画規模を超過するような最悪規模の洪水を物理的に算定し、その地域が潜在的に抱える最大の洪水リスクを明 示することで、最悪シナリオを想定した防災対策を考えることが可能となる.しかしながら、このような大規 模出水時には洪水のみならず、土砂災害や土石流、大量の流木流出なども発生し、これらが非線形的に被害を 増長させる恐れがある.上記の中央防災会議の提言するマルチハザードのリスク認識においては、これらの複 合的な発生や可能最大という側面からの評価・認識が必要である.また住民への周知方法やハザードマップの 見せ方等についても今後は検討を行う必要がある.

災害情報の有用性評価:

内閣府(2018)は平成28年度台風第10号災害を踏まえた課題と対策の在り方での議論を通じ、避難情報の 名称を変更した.避難指示は避難指示(緊急)に変更され、避難準備情報は避難準備・高齢者等避難開始に変 更された.これは、平成28年台風10号の岩手での豪雨災害(森口ら、2018)の際に避難準備情報の意味が明 確に伝わらなかった事に起因する.しかしながら、これでも防災情報に対する危機意識の改善は十分とは言え ず、今後、内閣府は5段階レベルでの表現を検討している.どのような避難情報の名称が有益かは今後も議論 が必要と考える.

気象庁は、高解像度降水ナウキャスト、土砂災害警戒メッシュ情報や予測雨量(メソ数値予報モデル:MSM) 等に加え、本論文で検証した高解像度の流域雨量指数や浸水状況を表現する表面雨量指数に基づく、「浸水害 の危険度分布」、「洪水警報の危険度分布」を運用・公開している.これらの有用性の検証を今後も継続的に行 い、現在利用可能な情報のなかで、どの情報が有用で注意点は何か等を整理する必要がある.

上記以外にも様々な取り組を実施・統合することで、発災前後の行政・住民の対応や有効な災害情報の発信 のための知見を整理し、有効なタイムラインの策定支援や、わかりやすい情報発信や伝わる情報伝達方法等を 更に検討していくことが必要である.

謝辞:

本研究は、JSPS 科研費 JP18K04372 の助成を受け実施したものです. ここに謝意を表します.

参考文献:

- 1) 気象庁 HP, 雨雲の動き(高解像度降水ナウキャスト), https://www.jma.go.jp/jp/highresorad/index.html (2019 年 1 月 16 日アクセス)
- 2) 北日本新聞,大雨で6市町村227人避難,Webun,2018.7.6. http://webun.jp/item/7477173 (2019年1月16日アクセス)
- 3) 呉修一・森口周二・堀合孝博、・小森大輔・風間聡・田中仁, 2015 年 9 月東北豪雨による渋井川洪水氾濫の 特徴, 自然災害科学, Vol.35, No.2, pp.87-103, 2016 a.
- 4) 呉修一・林晃大・森口周二・堀合孝博・田中仁,2015年9月渋井川洪水氾濫を対象とした可能最大流体力の算定,河川技術論文集,Vol.22, pp. 297-302, 2016 b.
- 5) 呉修一・千村紘徳・地引泰人・佐藤翔輔・森口周二・邑本俊亮,地域住民を対象とした防災情報の理解度 等に関する基礎調査と可能最大洪水を想定した防災対応の提案,日本自然災害科学,2019,投稿中.
- 6) S. Sato, S. Kure, S. Moriguchi, K. Udo, F. Imamura (2017) "Online Information as Real-Time Big Data About Heavy Rain Disaster and its Limitations: Case Study of Miyagi Prefecture, Japan, During Typhoons 17 and 18 in 2015" Journal of Disaster Research, Vol. 12, No. 2, pp. 335-346.
- 7) 消防庁:平成30年7月豪雨及び台風第12号による被害状況及び消防機関等の対応状況(第58報),(平成30年11月6日現在)http://www.fdma.go.jp/bn/2018/detail/1052.html(2018年12月28日アクセス)
- 8) 神通川堤防調査委員会:神通川堤防調査委員会報告書,2018.9. http://www.hrr.mlit.go.jp/toyama/upload/file/jindu teibouchosa1/07 houkokusyo.pdf(2019年1月15日アクセス)
- 9) 中央防災会議,平成 30 年7月豪雨による水害・土砂災害からの避難に関するワーキンググループ:平成 30 年7月豪雨を踏まえた水害・土砂災害からの避難のあり方について(報告),2018.12.26.
 http://www.bousai.go.jp/fusuigai/suigai_dosyaworking/index.html (2018 年 12 月 28 日アクセス)
- 富山新聞,西日本豪雨の教訓 避難指示の遅れは致命的,2018.7.12. http://editorial.x-winz.net/ed-98886 (2019年1月16日アクセス)
- 内閣府:平成28年度台風第10号災害を踏まえた課題と対策の在り方,2016.12.
 http://www.bousai.go.jp/oukyu/hinankankoku/guideline/pdf/161226_hombun.pdf (2019年1月15日アクセス)
- 12) 防災学術連携体:西日本豪雨・市民への緊急メッセージ,2018.7.22.
 http://janet-r.com/050_saigaiji/2018/050_2018_gouu/20180722_emergencymessage/2018gouu_0722_emessage.html
 (2018 年 12 月 28 日アクセス)
- 13) 森口周二,大河原正文,呉修一,2016年台風10号による岩手県内の被害の分析-地盤工学と河川工学の観 点から-,地盤工学ジャーナル,Vol.13,No.2,pp.149-158,2018.

平成28年北海道豪雨による道路被害からの教訓*

東北大学災害科学国際研究所 奥村 誠

国土交通省北海道開発局 林 憲裕

1. 本稿の目的

地球温暖化の影響が疑われる中,深刻な影響をもたらす豪雨災害が頻発している。その影響に より,都市間をつなぐ幹線交通路の途絶が長期間に及び,地域住民の生活のほか,広域的な経 済活動の停滞をもたらした事例も少なくない。一方で後述するように,交通インフラの維持管 理業務を委託している地場の建設業者への建設需要が減少する中で持続可能性に問題があり, 新技術の活用を含めた新しい対応策を考えていくことが不可欠である。本稿は,平成 28 年 8 月末の台風 10 号北海道豪雨による道路被害への対応について,注目すべき取り組みをまとめる。 第一著者は,平成 28 年 10 月および平成 30 年 9 月に国土交通省北海道開発局建設部を来訪し て,災害対応に関するヒアリングを実施するとともに,被災箇所の復旧状況を視察した。その 際,第 2 著者は事前の質問項目に対して,a)当時の状況,b)新たに発覚した問題点,c)その後の 改善点,に区分して状況を整理した。本稿は,それらの内容に基づき,道路管理や影響緩和策 などのソフトな災害対応の面で重要と思われる教訓を報告する。

2. 平成28年8月北海道豪雨による道路被害

* Lessons from highway damage by 2016 heavy rainfall disaster in Hokkaido by Makoto Okumura and Norihiro Hayashi

図-2 道東をつなぐルートの途絶位置(北海道開発局資料¹⁾)

図-3 道東をつなぐルートの途絶 期間(北海道開発局資料¹⁾) 平成28年8月17日から23日に3個の台風が相次いで 北海道に上陸し大雨が発生した。さらに30日には岩手県 に大きな被害をもたらした台風10号が津軽海峡から日 本海に西北に抜ける過程で、太平洋岸からの湿潤な空気 を巻き込み十勝地方を中心に記録的な大雨となった(図 -1)。これにより9河川で堤防が決壊、79河川で氾濫が 発生し、死者6名(行方不明を含む)のほか、鉄道も石 北線、石勝線、根室線、日高線で路盤流出などの深刻な 被害が発生した¹⁾。

国道は 28 路線 54 区間(延長 706.3km)で事前通行規制 を行ったが,実際には 24 路線 31 区間で土砂災害が発生

し,8月29日夜から通行止としていた道東自動車道の土砂災害と合わせて,日高山脈を越える すべての道路(7本)が通行不能になり,道東地域が途絶状態に陥った(図-2,図-3)。特に,国 道 274号の日勝峠前後の43.8kmの区間は,10か所の橋梁損傷,6か所の道路本体の洗堀と損 傷,3か所の覆道損傷など合計66か所で甚大な被害を受けた(図-4)。当初は現場に近づくこ とができず被害の概要把握が困難な状況で,最新のIT技術を駆使した復旧工事が平成29年10 月中に完成するまで,36.1kmの区間の通行止は14か月に及んだ。なお、この道路被害と復旧 工事の概要は、北海道開発局の資料¹⁻³や土木学会誌⁴⁾で紹介されている。

3. 事前通行規制の決定方法

a) 直轄国道では、災害の危険性が高い場所を事前通行規制区間として規制基準とともに指定し、パトロールの目視結果と合わせて判断している。パトロール業務は全道を128に分け業者に維持工事として発注している。1区間をおおむね2時間で循環できるように区間分割している。
b) 日勝峠は落石と雪崩を理由とした特殊通行規制区間と指定していたが、降雨による河川洗堀で橋梁背面の土砂流出や落橋、道路本体の洗堀は過去に例はなく、想定されていなかった。
c) 有識者会議の議論を受け、降雨および河川の水位を理由とする規制基準を追加し、テレメータ、CCTVを増設するとともに、河川管理者からの水位観測データを活用することとした。た

図-4 国道 274 号日勝峠区間の被災状況(北海道開発局資料¹⁾)

だし,河川管理者の水位観測地点が上流部に少ないこと,夜間の目視による水位観測が難しい こと,解除の判断において,水位低下時に河川蛇行が強まり浸食が増す可能性を考慮する必要 があり,水位に基づく単純な判断には限界があることが,課題として認識されている。

4. 災害発生の検知と規制の実施

a) 災害の発生はパトロールのほか警察・消防および直通電話#9910を通じた通報で検知する。 業者が事前通行規制区間のゲートを閉め,区間内部に残る車両を追い出す。

b) 規制区間内に集落があり孤立の危険性があった。パトロールカーに通行止を行う機材を積んでいない場合,通報を受けてから実効性のある規制が開始できるまでのタイムラグが長くなる。
c) 自治体に連絡要員(リエゾン)を派遣し,沿道の居住者の状況把握に努めるとともに,パトロールカーへの積載機材の見直しで3時間以内に規制を開始できるようにした。急病人対応のため緊急自動車のみ通行可能とする体制を確認した。

5. 復旧方針の決定と工事の迅速化

a) 災害復旧工事も,一般的な工事と同様の作業手順で測量,設計,工事管理を行っていた。しかし,道路自体が流され,流水や熊の足跡が発見されるなど,車両や徒歩で現場に近づくことが危険な状況で,本格的な積雪期が迫る中で被災状況の把握と復旧工事の計画と設計を迅速に進めることが必要となった。

b) 冬季の積雪も多く、工事可能な時期が制約される区間であった。発注済みの工事も一時中止 として資機材を本区間の復旧工事に集中させることとした。ドローン等で撮影したビデオ映像 から, Mofix(ビデオ画像処 理技術)を用いた連続モザ イク写真を作成し,短期間 で被害の全貌を把握した。 また,ドローン搭載の Laser Scanner 測量による現地測 量作業の効率化, SIM シス テムを用いた 3D データモ デル作成により被災規模を 迅速に把握し,調査期間の 短縮化 (200 日を約 30 日に 短縮) が図られた (図-5)。 さらに土工事においては,

■SfM(Structure from Motion)システムによる 3Dデータモデルの作成

従来の手法である実測(現地測量)では、約200日かかる作業を、ICTの有効活用により約30日に短縮。

図-5 測量に関わる新技術の適用(北海道開発局資料¹⁾)

機械を活用し、丁張を省略した。また、工事用道路の利用時間を割り当てて多区間の同時施工 を可能とした。冬季も橋梁護岸工事やコンクリート構造物工事を継続するとともに、除雪も実 施して工事の迅速な再開に備えた。

c) 今回の復旧工事は, i-construction 技術の成功例として評価されている⁴⁾。

6. 通行止期間中の影響緩和策

a) 道路情報板, HP, メール, SNS, 地域 FM, 記者発表を通じて, 被災状況と規制状況を広報 する体制を持っている。地域においても道の駅や除雪ステーション内にインフォメーションセ ンターを開設し,進捗状況の広報やパネル展示などを実施した(図-6)。

b) 道東地域の孤立が農水産物の輸送や観光に大きな影響を与えると考えられたため、NEXCO が昼夜連続工事により着手から24時間で9月1日8:00に道東道を開通させたことを受け、開 発局からNEXCOへの要請により、被災区間内の交通に対する無料化措置が実施され、悪影響 の緩和に役立った(図-7)。

c) 地域期成会,商工会議所,運輸関連協会などからの要望を受け,利用者や観光,経済への影響を少なくするための広報の充実に力を入れた。高速道の無料化は H29.10 の国道 36 号竹浦橋 被災時にも実施され,情報提供の強化は豪雪時にも効果を発揮している。なおネットワーク全 体の信頼性の確保を図ることの重要性は,全国的に認識され,平成 29 年度末の道路法改正によ る「重要物流道路制度」の創設につながっている。

7. 今後の課題

以上のように、この災害において、いくつかの特徴的な対応がとられたが、今後の災害への適 用可能性という点では以下のような課題がある。まず、パトロールを含む道路管理業務の業者 発注について、管理業務だけではペイしないことから、地元業者への建設・更新事業の発注量

図-7 道東道の代替ルート機能(北海道開発局資料¹⁾)

が減少していく中では担い手の持続が難しいという問題がある。次に,新技術の導入にあたり, 従来技術に基づく業務成果物を求めるのではなく,新しい技術で作成可能な成果物を受け入れ るよう,契約内容を見直す必要がある。ただし,その転換を急速に進めた場合,新技術に対応 できない中小の地元業者が排除される可能性にも配慮が必要である。 また,災害時に広域的な影響がどのように波及しているのかを把握するため,ETC2.0 をはじ めとするビッグデータに期待が高まっている.さらに,道路管理者や建設業者以外が有する情 報を積極的に活用することも検討に値する。例えばトラック輸送企業など,道路利用者のドラ イブレコーダーなどの画像や,沿道住民が農業用に有するドローンからの画像を活用できれば, 有用な情報を迅速に獲得できる可能性がある。これらの技術研究を積極的に進めていくことが 望まれる。

参考文献

1) 国土交通省北海道開発局 (2017) 平成 28 年 8 月北海道大雨災害への対応,北海道開発局報 告冊子,90 頁,平成 29 年 9 月 28 日初版発行.

 2) 佐藤友祐・佐藤大・藤岡博之 (2018) 台風の影響により被災した国道 274 号日勝峠(日高側) の復旧について-被災から 14 か月での開通を可能にした受発注者との協力体制-,第61回(平 成 29 年度)北海道開発技術研究発表会,防 8(道),6 頁,https://www.hkd.mlit.go.jp/ky/jg/gijyutu /splaat0000016711-att/splaat000001676d.pdf (2018.11.13 最終アクセス)

3) 南朋惠・伊東佳彦・中原孝行 (2018) 国道 274 号日勝峠災害の類型区分とその復旧-復旧工 事における ICT の活用-, 第 61 回(平成 29 年度)北海道開発技術研究発表会,防 10(道),5 頁, https://www.hkd.mlit.go.jp/ky/jg/gijyutu/splaat0000016711-att/splaat000001676f.pdf(同上)

4) 伊藤幸輔 (2018) 2016 年北海道豪雨災害による国道 274 号早期復旧技術, 土木学会誌, Vol.103, No.9, pp.24-25.

秋田県八峰町南部の沖積低地にみられる洪水堆積物について*

秋田大学地方創生センター 鎌滝 孝信

弘前大学大学院理工学研究科 岡田 里奈・梅田 浩司

1. はじめに

秋田県では、2017年、2018年と二年続けて洪水の発生があった。洪水の頻度や規模を予測す ることは、河川および河口周辺の防災対策を考える上でも重要である。筆者らは 2012 年度以 降、日本海東縁の秋田県および青森県において、地震・津波被害の将来予測に資する情報を整 備することを目的として、古津波の痕跡に関する調査を進めてきた。その結果、北東北におけ る日本海東縁の古津波に関する情報は徐々に蓄積されてきた(鎌滝ほか、2015、2016、2017、 2018 など)。一方、それらの調査では津波堆積物のみならず、洪水によって形成されたと考え られるイベント堆積物がいくつかの地点でみつかっているが(鎌滝ほか、2016;鍜冶ほか、2018 など)、過去の洪水、氾濫堆積物に関する研究例は多くない。なかでも 1983年日本海中部地震 の際に浸水被害を受けた地域から得られたボーリングコア試料には、1983年以前に形成された 津波堆積物および洪水堆積物の両方がみいだされている(鎌滝ほか、2016、2018の Em1 層お よび Em2 層)。本研究では、上記の洪水堆積物(鎌滝ほか、2016の Em2 層) について、その構 成物から西暦 915年に発生した十和田カルデラの噴火に関連した火山泥流起源の可能性が高い ことを明らかにしたので以下に報告する。

2. 調査地域

調査地域は秋田県山本郡八峰町峰浜沼田地区を流れる竹生川河口付近にあたり,東西を標高 10m 程度の二列の砂丘に囲まれた沖積低地である。そこは現在の海岸線から400~650m 程度内 陸に位置し,標高は2.5~3.5m 程度である。調査地域からおおよそ4.5km 南には米代川が流れ ており,米代川右岸から峰浜沼田地区までは,米代川や竹生川等の日本海へ注ぐ河川の現在の 流向方向と直交するように南北方向に沖積低地が延びる(図1)。1983年日本海中部地震の際に は,竹生川に沿って津波が遡上し,上流1800m付近まで到達したとされる(土木学会日本海中 部地震震害調査委員会,1986)。その際,調査地域に広がる水田には5~10cmの厚さの砂や泥, すなわち津波堆積物が表面を覆ったことがわかっている(三浦ほか,1984)。ボーリング掘削地 点(図1CのMH1)の標高は3.55mである。

3. 調査方法

ボーリング調査は,外径 116mmのオールコアボーリングでおこない,深さ 8m のコア試料を 採取した。採取した試料は室内に持ち帰り,堆積物の観察,記載,および各種分析等を実施し た。また,イベント堆積物と判断した部分に関しては構成粒子の検鏡観察をおこない,火山ガ

^{*} Flood deposits recorded in coastal lowland on southern part of the Happo town, Akita Prefecture by Takanobu Kamataki, Rina Okada and Koji Umeda

ラスが含まれている試料に関しては弘前大学機器分析センターの EPMA(日本電子社製 JXA-8230)を使用して主元素組成の分析をおこなった。調査地点の標高は、トータルステーション を用いた水準測量によって求めた。

図1 調査位置図

A:全体図, B:調査地点周辺の地形分類図, C:ボーリング掘削地点。B は国土地理院発行の 25,000 分の1都市圏活断層図「能代」, C の空中写真は国土地理院発行約 8,000 分の1 「1975 年撮影, CTO7522-C7A-3」を使用した。C の MH1 は本研究のボーリング掘削地点, 地点 1~10 に代表される測線 1, 2 の各地点は鎌滝ほか(2018)の調査地点を示す。

4. 調査結果

(1) ボーリングコア試料の層相、堆積環境およびイベント堆積物とその形成年代

図2にボーリングコア試料 MH1の柱状図と写真および推定される堆積環境を示す。MH1地 点のボーリングコア試料に関しては,鎌滝ほか(2016)がその層相観察を基に下位から,河川・ 氾濫原(深度2.00~8.00m),湿地(深度1.48~2.00m),砂丘(深度0.24~1.48m)および耕作土

(地表~0.24m)と4つの堆積相に区分しており,湿地堆積物の中にイベント堆積物 Em1 層が, 河川・氾濫原堆積物と湿地堆積物の間にイベント堆積物 Em2 層が挟まれることを述べた(図 2)。さらに鎌滝ほか(2018)は、イベント堆積物 Em1 層の成因を、その分布様式と構成物の特 徴から津波であることを明らかにし、その発生時期を13~15世紀頃と見積もっている。

ここでは、イベント堆積物 Em2 層の特徴を以下に述べる。深度 2.00~3.15m にみられる Em2 層は、材などを中心とした植物遺骸や軽石を多量に含む淘汰の悪い火山灰混じりのシルトから なり、下位の砂混じりシルトとの境界は侵食面である。この地層の下部には砂質シルトのリッ プアップクラストや多量の材および礫径 10~50mm 程度の軽石が多く含まれ、上方粗粒化する。 Em2 層の上部では、平行層理や低角の斜交層理が発達し上方細粒化する。Em2 層の形成年代に 関しては、MH1 コアの深度 2.66m、すなわち Em2 層の中から得られた材の放射性炭素年代年代 値が 910±30 yBP、Em2 層の上位の地層(深度 1.98m)からは 570±30 yBP と報告されている (鎌滝ほか、2016)。また、同地域から得られたボーリングコア試料の Em2 層の下位と考えら れる地層から、1030±30 yBP、1250±30 yBP および 1320±30 yBP などの年代値も報告されて いる(秋田県、2013)。

図2 ボーリングコア試料 MH1 の柱状図および写真

(2) イベント堆積物 Em1 層および Em2 層構成粒子の鏡下観察

調査地点周辺の海浜砂(図 3A), イベント堆積物 Em1 層の構成粒子(図 3B) およびイベント堆積物 Em2 層の構成粒子(図 3C, D) を示す。海浜砂を構成する砂の粒子と図 1C の地点 1 におけるイベント堆積物 Em1 層を構成する砂の粒子を顕微鏡下で観察,比較したところ,どちらもある程度円磨された石英や石質岩片が多く含まれており良く似ているが,火山ガラスはほとんど含まれないことがわかる(図 3A, B,鎌滝ほか, 2018)。一方,イベント堆積物 Em2 層の構成粒子をみると,Em1 層や海浜砂と異なり様々な形態の火山ガラスが多量に含まれていることがわかる(図 3C, D)。

図3 イベント堆積物の構成粒子と調査地点周辺の海浜砂の顕微鏡写真 A:調査地点周辺の海浜砂, B: Em1 層の構成粒子, C および D: Em2 層の構成粒子 A, B は鎌滝ほか(2018)より引用

(3) イベント堆積物 Em2 層に含まれる火山ガラスの主元素組成の分析

イベント堆積物 Em2 層中に含まれる火山ガラスについて, EPMA を用いた主元素組成をおこ なった。分析条件は電子ビーム径 10μ m, 加速電圧 15kV, 電流値 10nA としておこなった。そ の結果,分析値は K₂O が 1.30~1.57 wt.%, TiO₂ が 0.30~0.43 wt.%の範囲に収まった。本研究 で得られた分析値を,青木・町田 (2006) による十和田 a テフラ (西暦 915 年),十和田中掫テ フラ (約 6000 年前) および十和田南部テフラ (約 8600 年前)の K₂O-TiO₂ 図にプロットする と,十和田 a テフラの分析値と調和的なことがわかる (図 4)。したがって, Em2 層に多量に含 まれる火山ガラスは、十和田 a テフラ由来のものと解釈できる。

図 4 Em2 層に含まれる火山ガラス(本研究), 十和田 a テフラ(To-a), 十和田中掫テフ ラ(To-Cu)および十和田南部テフラ(To-Nb)の K₂O-TiO₂ 図

青木・町田(2006)のK₂O-TiO₂図に一部加筆

5. イベント堆積物 Em2 層の形成要因

ボーリング試料 MH1 から見いだされたイベント堆積物 Em2 層は,1) 材などを中心とした植物遺骸や軽石を多量に含む淘汰の悪い火山灰混じりのシルトを主体とし,2) 下位の砂混じりシルトとの境界は侵食面を呈し,3) イベント堆積物の下部は砂質シルトのリップアップクラストや材および軽石を多く含み上方粗粒化し,4) 上部では平行層理や低角の斜交層理が発達し上方細粒化する,という特徴がみられる。さらに Em2 層を構成する粒子は海浜砂の特徴と大きく異なり,火山ガラスを多量に含む。このように Em2 層には陸源物質が多く含まれることから,洪水堆積物と考えられる。

洪水堆積物 Em2 層の形成年代は、植物遺骸の放射性炭素年代値により 10~12 世紀頃と考え られる。この時期には十和田カルデラの大規模な噴火があり(西暦 915 年,早川・小山,1998), それに関連して発生した火山泥流が米代川流域に大きな被害を与え、当時の住家の埋積等が知 られている(赤石,1999)。また、Em2 層に含まれる火山ガラスの主元素組成も十和田 a テフラ と調和的である。したがって、本研究で得られた洪水堆積物はその内包物や形成年代から、十 和田カルデラの 915 年噴火に関連した火山泥流堆積物の可能性が高いと考える。また、米代川 を流下してきた火山泥流が竹生川流域の本調査地点に到達する流路は、日本海沿岸を南北に延 びる砂丘と東側の段丘に境された南北方向に延びる沖積低地(図1)と推定される。

6. おわりに

本研究により,秋田県八峰町の沖積低地から見いだされた洪水堆積物 Em2 層の形成要因は, 十和田カルデラの西暦 915 年噴火に関わる火山泥流の可能性が高いことが明らかになった。し かしながら,その到達経路に関しては仮説の域を出ない。今後,追加調査を進めその仮説を検 証していく予定である。

謝辞

本研究には、文部科学省「地(知)の拠点整備事業」平成25~29年度補助金および科学研究 費(基盤研究(C),課題番号:17K01321,代表:鎌滝孝信)を使用した。秋田大学大学院理工 学研究科の松冨英夫教授には、津波や洪水について日々ご教示いただいている。京都大学の増 田富士雄名誉教授には、津波および洪水堆積物についてご教示いただいた。秋田県八峰町総務 課、産業振興課および八峰白神ジオパーク推進協議会の方々には、現地調査に際してお世話に なった。ボーリング調査については、応用地質株式会社エネルギー事業部の阿部恒平博士およ び黒澤英樹氏にお世話になった。ここに記して関係各位に深く感謝の意を表します。

引用文献

赤石和幸:十和田火山,毛馬内火砕流に伴う火山泥流堆積物から平安時代の埋没家屋の発見,

地質学雑誌, 105, pp.x x i i i - x x i v, 1999.

秋田県:秋田県地震被害想定調査報告書, 553p, 2013.

- 青木かおり・町田 洋:日本に分布する第四紀後期広域テフラの主元素組成-K₂O-TiO₂図によるテフラの識別,地質調査研究報告, 57, pp.239-258, 2006.
- 土木学会日本海中部地震震害調查委員会編:1983年日本海中部地震震害調查報告書,土木学会, 933p, 1986.
- 早川由紀夫・小山真人:日本海をはさんで10世紀に相次いで起こった二つの大噴火の年月日-十和田湖と白頭山-,火山,43, pp.403-407, 1998.

鍜冶純輝・岡田里奈・梅田浩司・石田将貴・内館美紀・鎌滝孝信:津軽半島,鳴沢川流域にみ られる過去の洪水堆積物の特徴,東北地域災害科学研究.54,投稿中,2018.

鎌滝孝信・阿部恒平・黒澤英樹・三輪敦志・今泉俊文:秋田県沿岸の沖積低地にみられるイベ ント堆積物,第四紀研究, 54, pp.129-138, 2015.

- 鎌滝孝信・高渕慎也・松冨英夫・阿部恒平・黒澤英樹:秋田県男鹿市および八峰町における津 波堆積物調査,土木学会論文集 B2(海岸工学),72,I 1693-I 1698, 2016.
- 鎌滝孝信・安部訓史・金澤 慎・松冨英夫:秋田県南部の沿岸低地における過去の津波浸水域 および履歴の検討,土木学会論文集 B2(海岸工学),73,I 445-I 450,2017.

鎌滝孝信・内舘美紀・金澤 慎・石田将貴・松冨英夫:1983年日本海中部地震津波の影響地域
 における過去の津波履歴の検討,土木学会論文集 B2(海岸工学),74, I_529-I_534,2018.
 三浦昌司・児玉 徹・金田吉弘:日本海中部地震による津波被害,農業技術,39,pp.49-52,1984.

秋田県にかほ市沿岸低地にみられる津波および洪水堆積物の特徴*

秋田大学 宇内滉志・鎌滝孝信・安部訓史・得丸達生・松冨英夫弘前大学 岡田里奈・村上正能・梅田浩司

1. はじめに

近年,国内でも地震や大雨の影響により津波や洪水が発生し,多くの被害が報告されている。 秋田県では1983年5月26日に発生した日本海中部地震で,県北部の沿岸地域を中心に79人 が犠牲になるなど大きな津波被害を受けた。このような災害に対する減災対策を進めるために は、事前に防波堤や護岸の整備などを行うハード対策だけでなく、過去に発生した津波や洪水 の記録を基にし、住民の防災意識を向上させることを目的とする防災教育などソフト対策が重 要である。古文書等に記されていないより長期間にわたる津波および洪水の記録を追跡するた めには、地層の記録を調べることが有用である。日本における津波堆積物に関する研究例はほ とんどが太平洋沿岸におけるもので、日本海沿岸部における情報は不足している。また、洪水 堆積物に関する研究例も多くない。そこで筆者らは、将来における津波等の被害低減に役立て るための情報を取得することを目的として、秋田県にかほ市の三森地区において津波堆積物調 査を行っている。その結果、当地域ですでに報告されている津波堆積物(鎌滝ほか,2015,2017) に加え、洪水によって形成された可能性が高いイベント堆積物が見いだされたので報告する。

2. 調査地域および調査方法

調査地域は鳥海山の北西麓に位置し、秋田県にかほ市の白雪川と大沢川に囲まれた三森地区 で、標高約 2~3mの沖積低地の水田である。また、調査地点の沿岸部は浜提となっており、浜 堤の標高は 4~5m となっている。調査地点は浜堤に囲まれているような地形特徴がある。この 地域は、2013 年に公表された秋田県地震被害想定調査(秋田県、2013)によると、最大クラス の津波の場合、約 5~10mの浸水深が想定されている。また、調査地域からは津波堆積物と考 えられるイベント堆積物が複数見いだされている(鎌滝ほか、2015、2017)。一方、鳥海火山を 由来としたラハール(火山泥流)堆積物も当地域から2km程度内陸で報告されている(南ほか、 2015)。本調査地域において外形 116mm、コア径 90~100mmの機械ボーリング、直径 30mm程 度のハンドコアラーおよび幅 100mm、長さ 200cm程度の小型ジオスライサー(高田ほか、2002) を利用して地表から2~6mの堆積物を群列掘削した。試料は室内に持ち帰り、詳細な層相観察 を実施した。また、具体的な調査地点を図1に示す。

49

^{*}A study of tunami and flood deposits on coastal lowland in Nikaho City, Akita Prefecture. by Hiroshi Unai, Takanobu Kamataki, Norihumi Abe, Tatuki Tokumaru, Hideo Matsutomi, Rina Okada, Masayoshi Murakami and Koji Umeda

図 1 調査地点 A: 全体図, B: 拡大図, 測線 1, 測線 2:ボーリング掘削地点 引用: Google Earth

3. 調査結果

図1の測線1および測線2から得られたボーリングコア試料について、その構成物、地層境界、堆積構造などを観察した。ここでは地点3、地点7、地点8の詳細を以下に示す。

地点 3 のボーリングコアは,ハンドコアラーで掘削した。地点 3 の標高は 2.70m である。 0~21cm は耕作土でで,21~51cm は細粒砂混じりのシルトである。51~80cm は植物遺骸を多量に 含む黒色の泥炭層で,80~105cm は茶褐色のシルトである。105~120cm までは極細粒砂,細粒砂 および中粒砂から構成されており,上方細粒化の特徴が見られる。120~140cm は礫径 4mm 程 度の礫まじりシルトで,140~150cm は中粒砂からなる。

地点7のボーリングコアは、小型ジオスライサーで掘削した。地点7の標高は2.70mである。 0~22cm は耕作土で、22~52cm は細粒砂混じりのシルトである。52~82cm は黒色の泥炭で、 82~98cm は一部細粒砂まじりの泥炭である。98~162cm は中粒砂、粗粒砂、極粗粒砂、中礫から 構成されており、この地層を構成する砂粒子は比較的角のある特徴がみられる。

地点 8 のボーリングコアは小型ジオスライサーで掘削した。地点 8 の標高は 2.65m である。 0~30cm は耕作土で、30~35cm はシルト層である。35~70cm は細粒砂と中粒砂で構成されてお り、この地層の基底面は侵食面である。70~80cm は細粒砂まじりのシルト層である。80~110cm は植物遺骸を多量に含む黒色の泥炭である。110~130cm は中粒砂で構成され、基底部には侵食 面がみられ、下位の泥炭を侵食し取り込んだ偽礫がみられる。130~170cm は黒色の泥炭、 170~180cm は植物片まじりの粘土、そして 180~190cm は泥炭からなる。

図2 地点3および地点7の柱状図およびE1堆積物の写真

図 5 測線 2 における E2 および E3 層の厚さの変化

測線1のボーリングコア試料は主に有機質シルトや泥炭などを主体とした細粒堆積物からな り、その中に細粒砂や中粒砂を主体とした粗粒堆積物が挟まれる。地点7の深度98~162cm は 中粒砂,粗粒砂,極粗粒砂および中礫によって構成される。この砂層は,1)比較的角のある砂 によって構成されていること,2)陸側から海に向かって砂層が薄くなる傾向があること,3) 比較的粒径の大きい中礫が混在していることなどの特徴がみられる。このイベント堆積物をE1 層とする。

測線2のボーリングコアについて、有機質シルトや泥炭を主体とした細粒堆積物の中に細粒 砂を主体とした砂層が挟まれる。地点8の深度110~130cmは基底部が侵食面を呈し主に中粒 砂からなる。この地層の上部の深度110~112cmは細粒砂で構成されており、下部の中粒砂か ら上部に行くにつれて細粒化する特徴がある。また、深度125~130cm付近では、下層のシル ト層を侵食し取り込んだと考えられる偽礫を含む。この砂層は、1)基底部が明瞭な侵食面を呈 し、2)下層の泥炭を侵食し取り込んだ偽礫を含み、3)上部に粒度の細かい砂が堆積し下部は 比較的粗い砂が堆積すること、などの特徴から有機質シルトを主体とした細粒堆積物がある静 穏な湿地環境に、強い水流を伴った突発的なイベントが発生したと考えられる。また、このイ ベント堆積物をE2とする。

測線2のボーリングコアについては、もう一枚有機質シルトや泥炭を主体とした細粒堆積物の中に細粒砂を主体とした砂層がみられる。地点8の深度35~70cmは基底部が侵食面を呈し 主に中粒砂からなる層である。この砂層もE2と同様の特徴を持っている。このイベント堆積物をE3とする。

4. イベント堆積物の形成要因

E2 および E3 イベント堆積物については,層準や砂層の特徴が同様なことから既に報告されている津波堆積物(鎌滝ほか,2017の E1 層および E2 層)と同じである。つまり,E2 津波堆積物は 12~13 世紀以降,E3 津波堆積物は 14~15 世紀以降に形成されたと考えられる。

E1 イベント堆積物について測線1に沿って層厚の変化をみると,海から最も近い地点1から 海から最も離れている地点7に向かうにしたがって厚くなる傾向が認められる(図3)。また, E1 イベント堆積物は測線1において厚さは変化するがすべてのボーリングコアでみられるが, 測線2では地点11のみにしかみられない。前述したE1イベント堆積物の特徴も含めて考える と,河川の上流から土砂などを巻き込み強い水流を伴って氾濫したものと解釈できる。ゆえに E1 イベント堆積物を洪水堆積物と解釈した。図6はE1イベントのおおまかな浸水域を示して おり,矢印の方向に水が流れたと考えられる。また,鳥海火山北麓では過去に大規模な火山泥 流が発生していたことが明らかになっており,火山泥流の最大到達距離は土石流として横森周 辺,より希釈した河川流の状態で平沢周辺の海岸まで到達すると考えられている(南ほか,2014)。 今回,発見された E1 洪水堆積物が先行研究で議論された火山泥流の堆積物と一致するかどう かは,今後年代測定やより広域の分布調査をおこなうことで検討していきたい。

図 6 E1 イベントの浸水域

5. まとめ

本研究では、秋田県にかほ市三森地区の沖積低地において洪水堆積物の特徴を示し、砂層の 分布と層厚の変化から洪水の浸水域に関する一案を示した。土砂を伴った浸水域を考えるとこ のようになるが、水のみの遡上を考えるとさらに浸水域は拡大すると考えられる。このような 情報はこの地域の防災を考える上で重要な情報となると考える。今後、日本海側における過去 の津波および洪水に関する情報を整備するためにイベント堆積物のより広範囲への分布調査お よび試料の解析等を進める予定である。

謝辞

本研究には科学研究費(基盤研究(C),課題番号:17K01321,代表:鎌滝孝信)を使用した。 秋田県にかほ市農業委員会事務局および防災課の方々には現地調査に際してお世話になった。 ここに記して関係各位に深く感謝の意を表します。

引用文献

秋田県,2013,秋田県地震被害想定調査報告書,553pp.;鎌滝ほか(2015)第四紀研究,54,129-138;鎌滝ほか(2017)土木学会論文集 B2(海岸工学),73,2,I_445-I_450;南ほか(2015)火山,60,1-16;高田ほか,2002,地質ニュース,579,12-18.

東日本大震災の津波来襲時の

海岸保全施設の被災メカニズムと新たな津波対策*

東北大学大学院工学研究科 橋本 潔

東北大学大学院工学研究科 田中 仁

1. はじめに

東日本大震災の津波(以下,「今次津波」という)によって,宮城県の沿岸部はかつてない甚 大な被害を受けた。そこで,本稿では,宮城県における調査^{1),2)}を基に,災害に強いまちづく りのための多重型津波対策の観点から,今次津波来襲時の海岸保全施設の被災メカニズムを明 らかにすることにより,海岸保全施設による新たな津波対策について提示するものである。

2. 海岸保全施設の構造断面の被災メカニズムと粘り強い断面

現地調査による今次津波来襲後の宮城県沿岸の海岸保全施設の被災状況を踏まえて,海岸保 全施設の堤防や護岸,陸閘に着目して断面的変化による被災メカニズムを表-1に整理した。

堤防,護岸,陸閘はいずれも,施設を越える高い津波の押し波のみならず,津波の戻り流れ によって全壊,流出したことがわかった。

被災状況	被災メカニズム推定
堤防:裏法から	①海岸堤防より高い津波が押し波で到達し堤防背後洗掘, ②堤防背後の洗
倒壞	掘により堤防天端が倒壊, ③戻り流れによりさらに堤防侵食, 表法が倒壊
	し全壊
堤防:天端から	①海岸堤防より高い津波が押し波で到達し堤防天端が流出,②裏法倒壊,
倒壞	③戻り流れによりさらに堤防侵食、倒壊が進行し全壊
護岸:堤体の倒	①海岸堤防より高い津波が押し波で到達し堤防背後を洗掘, ②引き波が護
壊	岸天端を越流し護岸前面が洗掘,③戻り流れにより堤体,天端が倒壊,④
	戻り流れによりさらに侵食、倒壊が進行し全壊
護岸:波返工の	海岸堤防より高い津波が押し波で到達し波返工が破損
破損	
陸閘:破損·流出	①海岸堤防より高い津波が押し波で到達し陸閘を越流,②陸閘背後に戻り
	流れが到達し背面からの水圧で扉体破損,③陸閘の強度以上の水圧が作用
	し陸閘流出

表-1 海岸保全施設の構造断面の被災メカニズム

また,宮城県全沿岸(施設整備済み延長 163 km:2004 年河川局,港湾局,農村振興局,水産 庁整備分)のうち 24 海岸(施設延長 27 km)の海岸保全施設を対象として,海岸堤防の脆弱度 の分析を行い,海岸堤防の粘り強い断面の方向性を模索した。着目するところは,海岸堤防の 越流水深に対して,被災状況,天端高,比高,背後の状況(道路等の施設の有無)とした。

*Destruction mechanism of coastal structures during the 2011 Tohoku Tsunami and new countermeasures by Kiyoshi Hashimoto and Hitoshi Tanaka

図-1 に示した海岸保全施設の形状と被害規模の結果から、①様々な越流水深で被災が見られ るとともに、被災していないものも見られることから、粘り強い構造にすることは可能である が、越流する場合は対策が必要であること、②天端高が低い方は被害が小さいが、必要な天端 高は確保する必要があるため、天端高を低くすることは困難なこと、③比高が小さい方は被害 が小さく、比高を低くすることで粘り強い構造にできる可能性があること、④背後に道路等の 侵食を抑制する施設があると被災が小さく、背後に侵食対策を施すことで粘り強い構造にでき る可能性があることがわかった。

以上より,比高が大きい場合は背後の侵食も大きくなるが,背後に侵食を防止できる施設が あると被害が小さいことを踏まえ,できるだけ比高を小さくするとともに,裏法尻背後の侵食 対策により,堤防を粘り強い構造とすることが可能であると言える。

図-1 海岸保全施設の形状と被害規模

3. 海岸保全施設の戻り流れによる被災メカニズム

今次津波により仙台湾沿岸部の多くの海岸堤防が破堤しているが,前項に示したように,押 し波のみならず陸域への遡上後の戻り流れにより破堤規模が拡大したと推定される。

そこで、国土交通省東北地方整備局から借用した防災ヘリ(みちのく号)からの空撮ビデオ 映像をキャプチャーして,破堤している個所を中心として戻り流れのメカニズムの分析を行い, 国土地理院による被災後の空撮も含めて、戻り流れによる海岸保全施設の被災メカニズムの解 明を行った。表-2 に、推定される戻り流れによる海岸保全施設の被災メカニズムをまとめた。

資 料	場 所	戻り流れによる海岸保全施設の被災メカニズム
国土交通	閖上漁港,	広浦から勢いよく閖上漁港を通じて沖側に戻り流れが生じており、
省東北地	名取川周	同時に隣する名取川及び井戸浦・藤塚からも戻り流れが生じてい
方整備局	辺	る。時間が16時15分であることから、これは比較的大きな第1波
防災ヘリ		後の戻り流れ。
(みちの	五間堀川	貞山堀に沿って南北相互から五間堀川河口部に流下して戻り流れ
く号)から	と貞山堀	が生じており、その背後の破堤開口部から沖合に流出している。多
の空撮ビ		分に戻り流れが海岸堤防を破壊。
デオ映像	阿武隈川	海岸と河川堤防の接合部に集まる戻り流れにより破堤した。また、
	河口右岸	陸側にパラペット(河川堤防上部工)と海岸堤防の波返しが散乱。
	部	海岸堤防裏法尻付近にできた侵食溝は、押し波と戻り流れとの繰り
		返しで形成。
	荒浜漁港	阿武隈川右岸側の荒浜漁港から勢いよく戻り流れが発生しており、
		それに追随するようにその南側の合間から沖側に向かって戻り流
		れが生じ、海岸堤防を破堤。
	山元海岸	破堤地点に集まる戻り流れが鮮明に映し出されており、濁流として
		流出。堤防背後に沿う流れ、陸域から海岸林を越える流れが破堤地
		点で合流し, 速い流れが形成され, さらには侵食が増大。さらには,
		破堤地点から流れが速いため、押し波が進行できず重なって渦など
		も発生。また、海岸線を上空斜めアングルから見渡すと、破堤箇所
		が南北方向ある一定の位置で生じており、沖側の濁流の状況から判
		断すると、強い流れとその持続性を示している。濁水の境界は堤防
		背後の侵食部分。
国土地理	山元町	山元町の地形は海岸線から背後近くまでに山間が迫っており、海岸
院による		から遡上した津波が山に反射して戻り流れと変わり、勢いよく一気
被災後の		に海域に向かっており、沿岸各所では海岸堤防が破堤し沖に流出。
空撮	亘理町,	海岸背後が広域に平坦地であるため、押し波により内陸部奥深くま
	岩沼市	で津波が遡上し、ある時期から戻り流れと変わって貞山堀や五間堀
		川などの低い箇所に集まり海に流出。
	女川町	海岸背後がすぐ山間でもあり押し波の勢いが戻り流れに変わって、
		一気に海域へ戻る。

表-2 戻り流れの海岸保全施設の被災メカニズムの推定

以上より、今次津波による海岸堤防の破堤の原因は、大半が津波の戻り流れによるものであ ることがわかった。

また,図-2 に津波の戻り流れによる海岸保全施設の被災メカニズムのイメージを示したが, 海岸保全施設の被災メカニズムは,①河口部周辺等地形の低い箇所や押し波時に破堤した個所 に戻り流れが集中し,②戻り流れにより堤防法線に津波が流下し,③堤防背後の侵食がさらに 進行,④堤防の破損,倒壊,破堤が拡大した,ということであった。

なお、真野ら³は、すでにこのような戻り流れによる海岸堤防破堤のメカニズムを明らかに しているが、宮城県の調査¹⁾から、山元町から石巻市まで地区ごとの旧地形と津波破堤箇所の 関係を見ると、海岸堤防破堤箇所は、海岸背後の地区に湿地や干拓地が存在するところ(例え ば、牛橋河口、五間堀川河口、藤塚地区、南長谷地区、東松島洲崎海岸背後など)や旧河川が 存在するところであることを確認することができた。

閖上漁港と名取川 閖上漁港,名取川から 戻り流れが流下

荒浜漁港 破堤箇所,漁港港口から 戻り流れが流下

五間堀川と貞山堀 貞山堀に沿って戻り流れが流下

山元海岸 破堤地点に集まる戻り流れ

阿武隈川河口右岸 海岸と河川堤防の接合部こ 集まる戻り流れ

山元海岸 破堤地点に集まる戻り流れ

写真-1 国土交通省東北地方整備局防災ヘリ(みちのく号)からの空撮ビデオ映像

写真-2 国土地理院による被災後の空撮

図-2 戻り流れによる海岸保全施設の被災のメカニズムのイメージ化

5. 海岸保全施設における新たな津波対策

表-3 及び図-3 に,海岸保全施設の構造断面の被災メカニズム,海岸保全施設の被災状況分析 による粘り強い断面の検討に加え,津波の戻り流れによる海岸保全施設の被災メカニズムを踏 まえ,津波防護レベル(数十年から百数十年に1度の津波を対象に,人命及び資産を守るレベ ル)における海岸保全施設の対策と津波減災レベル(今次津波のように構造物対策の適用限界 を超過する津波に対して,人命を守るために必要な最大限の措置を行うレベル)に対して考慮 すべき対策について示したが,災害に強いまちづくりのための多重型津波対策の観点から,海 岸保全施設における新たな津波対策については,海岸保全施設は,津波防護レベルで整備し「粘 り強い」構造にすること,津波減災レベルに対しては,海岸堤防背後の盛土嵩上による「補強 効果」,防潮林の設置による「減勢効果」,運河の活用による「減勢効果」と戻り流れの「誘導 効果」を発揮させ,さらに「誘導効果」発揮のために,津波の戻り流れを円滑に排水するため の破堤点を考慮する必要があることを明らかにすることができた。

おわりに

筆者ら⁴⁾は,仙台湾沿岸における貞山運河等の津波減災効果と破堤点の赤井江における戻り 流れの解析を行い,運河の津波減災効果と誘導効果及び戻り流れの排水効果について確認して いるが,災害に強いまちづくりのための多重型津波対策の観点から,今後とも,戻り流れにつ いて定量的に解析し,運河の設置効果や戻り流れを排水させる方策等について,詳細に検討を 進めることが必要であると考える。

項目	対策			
海岸保全施設	堤防対策	天端を幅広に、天端被覆工、裏法被覆工を強化。裏法勾配		
の粘り強い構		を緩勾配化し,比高(背後地盤と堤防高の差)を小さくし,		
造		裏法尻に洗掘防止工を施工。		
	護岸対策	護岸前面に洗掘防止, 基礎部を杭などにより補強。波返工		
		の突出長を短くし構造を強化。施工打継部を強化し排水口		
		を設置。背後を洗掘防止。		
	陸閘対策	乗り越し用階段を設置し陸閘の数を減らす。フラップゲー		
		ト等により遡上した津波を排水。		
津波減災レベ	堤防背後の	堤防背後の洗掘に対して余裕しろを確保。防潮林の設置位		
ルに対し考慮	盛土嵩上	置での浸水深を低減させることにより,防潮林の効果を拡		
すべき対策		大可。		
	防潮林の設置	押し波時に津波の勢いを低減。ただし、押し波及び戻り流		
		れにより, 倒木した防潮林が漂流物となり, 背後家屋等の		
		被害を拡大させる可能性もあることに留意。		
	運河の設置	運河により, 戻り流れの澪筋を固定し, 堤防背後等の公共		
		土木施設に影響を与える箇所での洗掘を防止。ただし、押		
		し波時に津波の侵入経路となる可能性もあることに留意。		
	戻り流れを	わざと破堤させること(ヒューズ)により,スムーズに遡上		
	排水するための	した津波を海に排水。押し波時に破堤の可能性があること		
	破堤点の考慮	に留意。		

表-3 海岸保全施設における新たな津波対策

図-3 海岸保全施設における新たな津波対策

参考文献

- 1) 宮城県(2011): 宮城県東北地方太平洋沖地震津波防災対策検討業務委託報告書
- 2) 宮城県(2012): 宮城県公共土木施設構造検討会報告書
- 3) 真野 明・有働恵子・田中 仁 (2013):海岸堤防の被災・明石書店
- 4) 橋本 潔・田中 仁 (2018): 仙台湾における運河群の津波減災効果,土木学会論文集 B3 (海洋開発),第74巻2号, p. I_157-I_162.

高速道路切土斜面に被害をもたらした降雨の評価の妥当性について

- アメダス線形補間データとレーダー・アメダス解析雨量の空間的誤差 -

東北大学 芳賀奈津美 風間基樹 加村晃良

東日本高速道路株式会社 長尾和之 宇佐美学

株式会社ネクスコ・エンジニアリング東北 澤野幸輝

1. はじめに

高速道路切土盛土斜面では豪雨に対する維持管理が課題となっている。東北地方の高速道路 では、1993年から2017年までの23年間に豪雨以外の湧水等を原因とするものも含む斜面災害 が切土で102件,盛土で111件生じた。このうち降雨や台風に起因した斜面崩壊は切土で92 件,盛土で90件であり、2002年には2か月で36件の崩壊事例が報告されている。

現在高速道路では、時間雨量または積算雨量が基準値を超過した場合に、斜面崩壊の危険性 があると判断して通行規制を行うといった対応をしている。この基準は過去の経験に基づいて、 ある区画ごとに画一的に設定された値であり、基準値を超過した際には広範囲を一様に点検・ 巡視する必要があることから、災害対応の遅延リスクがある。また、基準雨量に達したとして も、実際には事前通行止めや規制が不要であったというケースや、一方で基準雨量に達する前 に災害が発生してしまうといった未捕捉災害が発生してしまうケース、双方の問題を抱えてい る。これを踏まえ、地盤工学会では、道路ネットワーク全体の通行止め時間が効果的に縮減し ていくように、対応策の選択および対応事業の計画を立ててゆく必要があるとしている¹⁾。

このように効率的な維持管理体制を実現するためには、素因・誘因に基づく危険度評価等が 求められるが、未だにその評価方法は確立されていない。そこで本研究では、斜面崩壊の大き な誘因の1つと考えられる降雨パターンに着目し、東北地方の高速道路切土斜面で過去に大き な被害を出した事例を分析し、降雨パターンと切土斜面被害発生との関係について考察する。 特にここでは、アメダス観測所における降雨データとレーダー・アメダス解析雨量データの空 間的誤差を分析した。

2. 使用データ

東北地方の高速道路切土斜面が降雨を誘因として崩壊に至った事例についての分析を行った。盛土と比較して切土は本線から斜面の状況を直接確認できるため、被災時刻と発見時刻の時間差が小さい傾向にある。また被災の時期は夏季に集中していることも分かっている²⁾。全92件の切土斜面被災事例のうち1998年の台風4号と2002年の台風6号影響を受け崩壊したとみられる24事例(12事例ずつ)を対象に分析した。雨量データの評価には2つの時間降雨量を用いた。1つ目は対象とする斜面から直近3ヵ所の気象庁アメダスデータ³⁾を直線距離で線形補間したもの(図1参照)であり、もう1つは地上の雨量計を組み合わせて解析したレーダー・

*Validity of the evaluation of rainfall that caused damage to cut slopes of expressway by Natsumi Haga, et al.

アメダス解析雨量3)(以下,解析雨量)である。

対象とする崩壊地点は岩手,宮城,福島の三県に分布する。解析雨量が存在するのは 1988 年4月以降であり,2001年3月までは5km四方メッシュ,2001年4月からは2.5km四方メッ シュが採用されている。本研究の検討では1988年以降の降雨を対象とした。また,各時間雨量 データから降雨イベントを抽出する際には12時間連続で時間雨量0mmの場合を降雨イベント の区切りとした(図2参照)。

3. 解析雨量と線形補間雨量

1998年台風4号被災地点概要(一部) 3.1. 1998年の台風4号の被災点のうち,磐越自 動車道 50.7~66.2kp に位置する 7 つの切土斜 面に関して 5km 四方の解析雨量を適用する と、連続した4つのメッシュに区切ることが できる。図3に被災地点とメッシュの配置, 線形補間に用いたアメダス観測所の概略位置 関係を示す。またグレーの破線位置における 地形断面図が下部のグラフである。この4つ のメッシュにおいて、1995年から1998年ま での4年間の各時刻における解析時間雨量の 標準偏差を比較し,偏差の大きい上位10の時 刻を表1にまとめた。()内の数値は各被災地 点の線形補間雨量を示す。7番目と9番目は 被災時刻を含む降雨イベント内の時刻である。 2 番目の時刻では隣り合うメッシュの解析雨 量に最大 43mm/h, 同地点を示す 2 種類の雨 量間に最大 45mm/h の差が見られる。図 3 の

地形断面を見ると、20kmの間に標高差が約400mある地点を含むことがわかる。さらに広域の 地図を見ると、地点83を含むメッシュには標高700mを超える山が存在していた。この標高の 違いが降雨をもたらす雲の動きに影響を与え、地上の降雨量に違いを生み出していると考えら れる。

\square		/F ¥	被災地点位置の解析雨量(補間雨量)[mm/h]			
	口的	酒左	地点53	地点11,47,87	地点84,86	地点83
1	1998/7/22 8:00	19.6	50 (18)	12 (14,15,13)	3 (2,2)	2 (2)
2	1997/7/24 15:00	18.8	0 (0)	3 (0,0,0)	45 (0,0)	2 (0)
3	1997/7/21 16:00	18.1	43 (0)	31 (0,0,0)	4 (0,0)	0 (0)
4	1995/7/24 16:00	17.1	40 (0)	0.4 (0,0,0)	0.4 (0,0)	0.4 (0)
5	1997/7/24 16:00	16.1	0.4 (0)	7 (0,0,0)	40 (0,0)	2 (0)
6	1997/8/26 18:00	12.2	31 (9)	14 (7,8,6)	2 (0,0)	0.4 (0)
7	1998/8/29 10:00	9.8	0 (4)	0 (8,7,10)	21 (7,14)	18 (15)
8	1998/9/22 15:00	8.9	21 (11)	18 (8,8,6)	4 (3,1)	0(1)
9	1998/8/29 8:00	8.9	22 (12)	8 (9,9,7)	0.4 (3,1)	0 (1)
10	1997/8/4 16:00	8.4	1 (2)	0.4 (5,4,6)	14 (4,9)	20 (9)

表1 1998 年台風4号による被災地点の線形補間時間雨量と解析時間雨量の比較

3.2. 地点 11 の解析雨量と線形補間雨量

1998 年 8 月の台風 4 号による被災地点 11 に着目し 12 時間連続で時間降雨量が 0mm の場合 を降雨イベントの区切りとして被災時の降雨イベントを抽出した。図 4 は被災時降雨イベント の時刻歴時間雨量,図 5 は累積雨量である。この被災時刻を含む降雨イベントの降り始めから 降り終わりまでの時刻は,解析雨量,線形補間雨量においてそれぞれ 1998/8/25 17:00~1998/9/1 8:00,1998/8/25 20:00~1998/9/1 4:00 であった。この地点では被災時降雨イベントにおける 2 つ の時間雨量の増減のタイミングは概ね一致したが,同時刻における 2 つの値は最大 20mm/h 異 なった。線形補間雨量では時間雨量の最大が 15mm/h であるのに対して解析雨量ではほぼ 2 倍 の 29mm/h であった。また解析雨量では 15mm/h を超える時間雨量が 6 回記録されている。図 5 をみると被災時の累積雨量は解析雨量が 280mm で線形補間雨量より 60mm 多く,最終的な累 積雨量は解析雨量が 456mm,線形補間雨量が 392mm でその差は 64mm であった。他被災地点 でも同様に解析雨量が線形補間雨量を上回る傾向が見られた。 1998 年被災の地点 11 において解析雨量と 線形補間雨量の時間雨量の差が大きい時刻を 抽出した。比較範囲は解析雨量が存在する 1988 年 4 月から被災した 1998 年の末までの 10 年 9 ヵ月である。表 2 にはこの間の解析雨 量と線形補間雨量の差が大きい時刻とその時 間雨量を 2 つの時間雨量の差が大きい順に並 べた結果の上位 18 位まで(上位 20 の時刻と 時間雨量)を示した。これを見ると,上位 17 までの時刻全てにおいて解析雨量が線形補間 雨量を上回る結果となった。線形補間雨量が 解析雨量を最も大きな差で上回った時刻は 1997/8/26 17:00 でその差は 9mm/h であり,解 析雨量が上回った時の最大差 31mm/h の 3 割

$\Big/$	日付	時間雨量 [mm/h]			
	ЦЫ	解析雨量	補間雨量	差(解析-補間)	
1	1997/7/21 16:00	31	0	31	
2	1995/8/11 12:00	22	1	21	
	1997/8/22 21:00	22	1	21	
4	1998/8/27 16:00	27	7	20	
5	1995/8/13 18:00	19	0	19	
6	1995/8/3 0:00	32	15	17	
7	1995/8/16 15:00	24	8	16	
0	1998/8/27 4:00	29	15	14	
8	1998/8/29 9:00	23	9	14	
10	1995/7/13 10:00	17	5	12	
10	1998/8/27 19:00	26	14	12	
12	1996/7/27 20:00	11	0	11	
12	1998/7/29 22:00	21	10	11	
	1995/3/17 18:00	15	5	10	
14	1997/11/27 0:00	28	18	10	
14	1998/8/12 10:00	21	11	10	
	1998/9/22 15:00	18	8	10	
18	1995/8/16 14:00	12	3	9	
	1997/8/3 17:00	11	2	9	
	1997/8/26 17:00	1	10	-9	

表 2 被災地点 11 解析-線形補間雨量比較

程度の値であった。これらのことから、比較を行った期間において、解析雨量が線形補間雨量 よりも大きい値を示す傾向にあるということが言える。また、表の網掛け部分は被災時刻を含 む降雨イベント内に含まれる時刻を示しており、斜面被害をもたらした降雨イベントにおいて 時間雨量の観測方法の違いが分析結果の違いに影響をもたらすことが示唆される結果となった。

3.3. 地点 41 の解析雨量と線形補間雨量

2002 年 7 月に発生した台風 6 号における被災地点 41 についても同様に時刻歴の時間雨量と 累積雨量を比較した。結果を図 6,7 に示す。被災時刻を含む降雨イベントの降り始めから降り 終わりまでの時刻は,解析雨量,線形補間雨量においてそれぞれ 2002/7/9 4:00~2002/7/11 15:00, 2002/7/9 17:00~2002/7/11 7:00 であった。時間雨量最大値は解析雨量で 20mm/h,線形補間雨量 で 25mm/h であった。1998 年の台風 4 号の際に被災した地点 11 の例では解析雨量が線形補間 雨量をほとんどの時刻の時間雨量で上回っていたのに対し,この例では線形補間雨量が解析雨 量を上回る時刻が多い結果となった。2002/7/10 0:00 以降,降雨イベントが終了する 2002/7/11 15:00 までの 40 時間の間では解析雨量が線形補間雨量を上回ったのは 7 時間のみであり,その時間+雨量差の最大は 2mm/h であった。図 7 の時刻歴累積雨量を見ると,解析雨量,線形補間雨量の被災時の累積雨量はそれぞれ 129.6mm, 175mm であり,降雨イベント終了時の累積雨量 はそれぞれ 137.8mm, 194mm でその差は 56.2mm であり,線形補間雨量が解析雨量の 1.40 倍で あった。これは用いる雨量の選択で結果が大きく変わることを示す。

次に2002年の台風6号の被災地点41において,解析雨量と線形補間雨量の時間雨量の 差が大きい時刻を抽出した。解析雨量が存在する1988年4月から被災した2002年末までの14年9ヵ月の間の解析雨量と線形補間雨量の差が大きい時刻とその時間雨量を上位12位まで(上位14の時刻と時間雨量)並べた結果を表3に示す。表の網掛け部分は被災時刻を含む降雨イベント内の時刻と時間雨量を示している。これを見ると,上位11の時刻全

	D.(+	時間雨量 [mm/h]			
\backslash	口 15	解析雨量	補間雨量	差(解析-補間)	
1	1994/8/29 22:00	30	2	28	
2	1999/8/13 7:00	44	17	27	
3	1999/7/16 21:00	24	0	24	
4	1998/7/28 17:00	43	20	23	
5	1990/8/7 16:00	22	0	22	
	1999/8/18 14:00	23	1	22	
7	2000/8/5 16:00	34	16	18	
0	1989/7/22 15:00	17	0	17	
° –	1996/10/4 15:00	18	1	17	
10	1989/8/27 19:00	36	20	16	
	1998/7/11 15:00	16	0	16	
	1988/8/30 23:00	19	4	15	

15

表 3 被災地点 41 解析-線形補間雨量比較

てにおいて解析雨量が線形補間雨量を上回っていることがわかる。さらに線形補間雨量が上回 った12位の時刻2002/7/114:00は2002年の台風4号の降雨イベントに含まれる時刻であった。 また,この時の差は15mm/hで,解析雨量と線形補間雨量の差が最大となった1994/8/2922:00 の雨量差28mm/hと比較すると半分程度の差であると言える。

12

1994/8/5 19:00

4. 解析雨量とアメダス雨量

解析雨量と線形補間を行う前のアメダス観 測所における観測雨量(以下アメダス雨量) の比較を行った。表4に船引アメダス観測所 における解析雨量とアメダス雨量を比較した 結果を示す。この船引観測所は図3の略図内 で被災地点83と同じ5km四方メッシュ内に 含まれる。比較範囲は1988年4月から2002 年12月までとした。表4より,解析雨量がア メダス雨量を上回る際の最大差は35mm/h で あった。一方でアメダス雨量が解析雨量を上

\sum	D /4	時間雨量 [mm/h]			
	日1寸	解析雨量	アメダス	解析-アメダス	
1	1994/8/20 11:00	35	0	35	
2	1994/9/8 16:00	67	38	29	
	2000/8/8 20:00	29	0	29	
4	1994/8/9 14:00	24	0	24	
5	1999/9/8 13:00	23	0	23	
G	1990/9/20 0:00	38	17	21	
0	1999/8/21 18:00	21	0	21	
8	1989/7/20 17:00	19	0	19	
	1994/8/20 12:00	19	0	19	
10	1994/5/27 17:00	20	2	18	
144	1988/4/13 11:00	1	5	-4	

表 4 船引観測所 解析-線形補間雨量比較

回る結果が出てきたのは144番目であり、その差は4mm/hと小さい値となった。

図 8,9 はそれぞれ船引観測所における時刻歴時間雨量と累積雨量を示したものである。各 雨量を比較すると、1988 年 4 月から 2002 年の間において解析雨量がアメダス雨量を上回る傾 向が続いていることがわかる。同期間における各雨量の年間累積雨量平均を算出すると、アメ ダス雨量では1173mm/年であったのに対して解析雨量では1686mm/年とおおよそ1.44倍もの値 を示した。

15

5. 結論

本研究によって解析雨量の隣り合う 5km 四方のメッシュ間で最大 40mm/h 以上, 同地点にお ける解析雨量と線形補間雨量の間で 40mm/h 以上の時間降雨量の差が生じることが分かった。 これは周辺地形が降雨をもたらす雨雲の動きに影響を与えるためと考えられる。また線形補間 雨量, アメダス雨量は解析雨量より小さい値を示す傾向にあった。したがって解析雨量を用い ることで, 広い範囲で安全側の評価が可能であると考えられる。

今後の課題としては、解析雨量を用いた斜面崩壊に対する降雨の影響分析を行うこと、降雨 を代表とする誘因に加えて地質・地形・供用年数等の素因を組み合わせた評価を行うことが挙 げられる。また本研究では分析対象を1998年の台風4号と2002年の台風6号の際の24件の被 災斜面に限定していたが、今後は対象を拡大し、他の降雨災害で被災した斜面と健全な斜面を 分析し比較することで斜面崩壊に大きく影響する因子を特定したいと考える。

参考文献

- 1) 地盤工学会(2009):地震と豪雨・洪水による地盤災害を防ぐために-地盤工学からの提言
 一,地盤工学会2007年度会長特別委員会
- 2)芳賀奈津美,金鍾官,河井正,風間基樹,長尾和之,高橋卓也,澤野幸輝(2018):東北地方の高速道路切土斜面に被害をもたらした降雨パターンの分析,東北地域災害科学研究論文集,Vol.54, pp.143-148.
- 3) 国土交通省気象庁, 各種データ・資料, www.jma.go.jp/jma/menu/menureport.html
- 4) 地理院地図, http://maps.gsi.go.jp

八甲田山における積雪水量に関する研究*

八戸工業大学, 柿崎 志歩 佐々木 幹夫

1. はじめに

八甲田山に降り積もっている積雪層からの融雪水は地下に浸透し,地下水になり,7 月までに 青森県の東と西にある平野部の河川を潤している。川の水が飲料水やかんがい用水に利用され ており,八甲田山の積雪層からの融雪水は,青森県において重要な水資源となっている。

八甲田山の雪質・積雪特性を調査することで河川への融雪水量を知ることが出来る。しかし、 八甲田山の積雪水量については調査・研究例がなく、本研究が初めてである。八甲田山の積雪水 量は、青森県において重要な水資源となっており、解明が急がれる。

2. 積雪特性の調査

積雪特性の調査地は,酸ヶ湯観測所とし,この地点における過去10年の積雪特性を調べた。 積雪深の観測値は気象庁で公開されており,このデータを利用している。図1に2009年から 2018年までの酸ヶ湯の積雪深を示した。図に示すように,2009年の積雪開始は11月5日,ピー クは2010年2月21日,最大積雪深は同日に300cm,積雪終了は5月19日となっている。次に 2012年の積雪開始は11月14日,ピークは2013年2月26日,最大積雪深は同日に566cm,積雪 終了は6月5日であった。2015年の積雪開始は11月22日,ピークは2016年3月2日,最大積 雪深は同日に323cm,積雪終了は5月13日であった。次に2016年の積雪開始は11月1日,ピー クは2017年3月10日,最大積雪深は同日に383cm,積雪終了は5月22日であった。2017年の 積雪開始は11月11日,ピークは2018年2月21日,最大積雪深は同日に429cm,積雪終了は5月 19日であった。積雪は11月下旬から始まり,5月下旬に無くなっている。また,どの年もピー クはだいたい2月下旬から3月上旬に迎えている。

* Study on snow water on Hakkoda mountain by Shio Kakizaki and Mikio Sasaki

3. 積雪水量の予測

図1から積雪深は分かるが密度は不明のため積雪水量は分からない。そのため,八甲田山の水 資源を明らかにするため,以下に示すように降水量と気温より積雪水量を積雪モデルおよび融 雪モデルを用いて予測した。図2は積雪水量計算の流れを示している。

積雪深の計算の流れ

図2 積雪水量計算流れ

(1)降雪量モデル

降雪量 s は式(1)より次のように与えられる。

$$s = afr \quad \exists \exists c \in a = \begin{cases} 0 & T \ge T_m \\ 1 & T \le T_i \\ 1 - \frac{T - T_i}{T_m - T_i} & T_i \le T \le T_m \end{cases}$$
(1)

f: 高度上昇に伴い増加する降水量の係数

r:降水量

T: 気温

降水量 s は,気温により雨になるか雪になるかの判定が必要である。 $T \ge T_m$ になると,降水は雨になる。ここに,T は気温,T_mは山域全体で降水が雨になる温度である。本研究では $T_m = 2^{\circ}C$ としている。また, $T \le T_i$ になると,気温が低くなり雪になる。ここに, T_i は山域全体で降水が雪になる温度である。本研究では $T_i = 0^{\circ}C$ としている。 $T_i \le T \le T_m$ になると気温 T は 0°Cから 2°Cの間になり,0°Cに近くなると雪になる割合が高くなり,2°Cに近くなると雨になる割合が高くなる。

(2)融雪量モデル

融雪量 Rm は式(2)より次のように与えられる。

$$R_{m} = bcT \quad \Box \Box i \Box \quad b = \begin{cases} 1 & T \ge T_{m} \\ 0 & T \le T_{i} \\ 1 - \frac{T - T_{i}}{T_{m} - T_{i}} & T_{i} \le T \le T_{m} \end{cases}$$
(2)

融雪量 R_m は,温度 T に比例する。融雪係数 c は,1 C当たりどれくらい雪が融けるかを与える係数である。したがって,融雪係数cが高ければ速く雪が融けることになる。式(2)における係数 b は雪が融けるかどうかを与える関数である。T \ge T_mになると温度が高くなり,雪が融ける。この時b = 1としている。また,T \le T_iになると温度が低くなり,雪は融けない。この時,融雪は生じていないのでb = 0としている。T_i \le T \le T_mになると 0°Cから 2°Cの間になり,0°Cに近くなると雪は融けにくく,2°Cに近くなると雪は融けやすくなる。したがって,係数bは気温Tの融雪への寄与率を表している。

(3)積雪深モデル

第 t 日目における積雪深 S_t は、その前日 t-1 日目における積雪深 S_{t-1} に当日の降雪量 s_t を加え、当日の 融雪量 R_{mt} を引いた深さとなる。よって積雪深 S_t は式(3)により与えられる。

 $S_t = S_{t-1} + s_t - R_{mt}$

(3)

St-1: 第 t-1 日目の積雪水量深

st:式(1)より与えられる第t日における降雪量

R_{mt}:式(2)より与えられる第t日における融雪量

ここに, 添字 t および t-1 は第 t 日目および第 t-1 日目の意味である。Stは t 日目の積雪水量深を表す。

図3 2018年の積雪水量の予測,融雪係数 c=0.3

図4 2018年の積雪水量深の予測,降雪量係数 f=3.0

図3と図4は降水量係数fと融雪係数cをそれぞれ固定して求めた積雪水量の予測結果を示している。図3は融雪係数c=0.3とし,降水量係数を2~5で与えた場合の積雪水量の予測結果で

あり,図3に示すように降水量係数fの値が大きいと積雪量が多くなるため,遅くまで雪が残る。 図4は降水量係数f=0.3とし,融雪量係数cを0.1~0.4で与えた場合の積雪水量の計算結果であり,図4の融雪係数cの値が大きいと気温の融雪への寄与率が高くなるため,雪が速く融ける。

4. 現地観測

· 観測位置

調査地点は図5で示す通り八甲田ロープウ エーから3km離れた箇所にあり,徒歩により 移動した。

今回 2018 年 4 月 21 日は北八甲田に調査地 点を設け測定を行った。調査箇所は北八甲田 硫黄岳北側斜面にあり,東京座標では N40° 38′47.6″,E140°52′53.2″となっている。

図5 八甲田山位置

5. 観測方法

前述のように観測は南八甲田山中か北八甲田山中において行ってきたが,今年は北八甲田山 中にて行った(図 5)。測定は 2018 年 4 月 21 日に行い,天候は晴れ,標高は 1220m 観測対象の積 雪面は鉛直に掘り,密度の測定を行った。観測積雪層厚は雪層の地面近く,低木草上端までの深 さ 2m 程度としており,今回は 2.5m まで観測を行った。観測鉛直雪壁の製作には毎年 2 時間程 度の時間を要している。今年も隔雪凍結が生じる気温上昇低下があり,幾つか氷の厚い層ができ ていた。下層は例年と同じく硬い雪の層となっており,鉄製のスコップでないと観測鉛直積雪面 の成形は不可能であった。観測鉛直雪面の製作後,密度の測定を行っている。

密度の測定はおおよそ40cm³の容器に 入った雪の質量を測定し,密度を算定し ている。融雪期の自然の状態の雪の密度 であり,乾燥密度でもなく,また湿潤密度 でもない。

図 6 に密度の測定結果を示した。図 6 は 2017 年⁽¹⁾と 2018 年の同一深さでの 3 回測定値の平均を示している。図より以 下のことが言える。

2017年は深さ25cmや125cmで急に 密度が上昇している。これは気温が上 昇と下降を繰り返し,氷の層にぶつかっ た為である。表層を除けば積雪層は融 雪期の末期であったことが言える。

2018 年は深さ 10cm のところで急に密度が上昇している。これは 2017 年と同様に気温の上 昇と下降が繰り返した為,10cm のところで硬い氷の層が出来たと考えられる。
6. 積雪水量予測と観測積雪水量

図 7 に 2017 年の積雪水量予測と観測積雪水量を示した。式(1)における降雪量係数 f および 融雪係数 c は,f=4.1,c=0.26 と設定した。観測積雪深は平均密度と積雪深(酸ヶ湯)の観測値 235cm(2017 年 4 月 22 日)より求めている。

ここに平均密度 ρ は次のように求めている。

$\rho = (5 \times 456 + 20 \times 676 + 25 \times 611 + 25 \times 627 + 25 \times 693 + 25 \times 676 +$

$25 \times 627 + 25 \times 644 + 50 \times 660)/250 = 644 \text{ kg/m}^3$

上記の平均密度の計算において,積雪層の厚さは 250cm,上層から 5cm の密度は 456kg/m³,次 の 20cm の密度が 676kg/m³,以下その下層 25cm 毎の密度が 611,627,693,676,627,644,660kg/m³ となっていることより平均密度 ρ を求めている。

図7 積雪水量の予測と観測積雪水量 ● (2017 年 4 月 22 日)

水換算の積雪深水量観測値 St を 2017 年 4 月 22 日においては次のように求めている。

 $S_t = 2350 \text{mm} \times 0.644 = 1513 \text{mm}$

図7の f=4.1,c=0.26 は計算値が観測値と一致している。図示してないが,積雪が 0cm になっている日も積雪水量予測結果と,観測積雪深とが一致している。

図8に2018年の積雪水量予測と観測積雪水量を示した。式(1)における降雪量係数fおよび融 雪係数cは,f=3.6,c=0.28と設定した。観測積雪深は平均密度と積雪深(酸ヶ湯)の観測値230cm (2018年4月21日)より求めている。

ここに平均密度 ρ は次のように求めている。

 $\rho = (10 \times 725 + 15 \times 546 + 20 \times 644 + 25 \times 595 + 30 \times 693 + 25 \times 595 + 25 \times 660 + 20 \times 600 \times 6$

 $25 \times 611 + 25 \times 644 + 50 \times 660)/250 = 639 \text{ kg/m}^3$

上記の平均密度の計算において,積雪層の厚さは 250cm,上層から 10cm の密度は 725kg/m³,次 の 15cm の密度が 546kg/m³,以下その下層 25cm 毎の密度が 644,595,693,595,660,611,644, 660kg/m³となっていることより平均密度 ρ を求めている。

水換算の積雪深水量予測 Sot を 2018 年 4 月 21 日時点で次のように求めている。 Sot = 2300mm × 0.639 = 1469.7mm

2017 年の f=4.1,c=0.26 と 2018 年の f=3.6,c=0.28 について,これらの係数の途中経過は図示し てないが,以下のように調整して決定している。2018 年の係数を 2017 年の係数 f=4.1,c=0.26 に すると,積雪水量が 4 月 21 日時点で 1870.9mm 大きくなっている。これが観測値と一致するの が f=3.9,c=0.286 である。しかし f=3.9,c=0.286 にすると,積雪終了時期が 5 月 25 日になり計算値 と 6 日ずれる。また,5 月 19 日に積雪は終了するが予測値は 5 月 25 日になるので,f=3.6,c=0.28 とすると積雪終了が 5 月 19 日になり,計算値が観測値と一致する。

7. まとめ

本研究により以下のことが明らかとなった。

- ①積雪は11月下旬から始まり5月下旬に0になる。
- ②積雪のピークは2月下旬から3月上旬に迎えている。最積雪深は2010年に300cm,2013 年に566cm,2016年に323cm,2017年に383cm,2018年に429cmとなっている。最大積雪 深は300~600cmになる。
- ③降水量係数 f が大きくなると降雪量が多くなり,遅くまで雪が残る。2017 年は f=4.1,2018 年は f=3.6 となり f の値は 3.6~4.1 となった。
- ④融雪係数 c が大きいと,雪が速く融ける。2017 年は c=0.26,2018 年は c=0.28 となり c の 値は 0.26~0.28 となった。

雪・融雪モデルを使用すれば,山の残雪の正確な水量を算定することが可能になると考える。

参考文献

(1)水本涼太,佐々木幹夫:八甲田山積雪特性,東北地域災害科学研究,vol.54,2017,pp.155-160.

Sand spit morphological change of An Hai and Le Thinh inlets, Phu Yen Province, Central Vietnam.

Nguyen Quang Duc Anh¹, Hitoshi Tanaka², Nguyen Xuan Tinh³, and Nguyen Trung Viet⁴

1. Introduction

Tuy An is one of the most beautiful coastal districts in Phu Yen province in the central of Vietnam. This place has many scenic spots such as O Loan lagoon, the Sea cliff of stone plates and Cu Lao Mai Nha island. There is a long beautiful sand spit of 6 km length from Le Thinh and An Hai tidal inlets (as shown in Figure 1). These two tidal inlets are very important to maintain the O Loan lagoon water environment conditions which are vital for the aquaculture activities such as shrimp ponds in this area. This is a rather special and typical form of morphology along the coastline in Central Vietnam (Eriksson & Persson, 2014; Tanaka et al., 2018)

Figure 1. Location of the sand spit and An Hai and Le Thinh Inlets

Along O Loan lagoon through An Hai and Le Thinh inlets, local aquaculture activities have been developing significantly, which is conducive to the increase of revenues and profits to the local residents. However, it also negatively affects the living environment of the local people. The zone of the O Loan lagoon (with a total water surface area of 1,570 ha) to the end of the tidal channel of the local aquaculture industry has been developing strongly in the last 20 years. The shrimp ponds protecting methods are illustrated in the Figure 2. As can be seen in the Figure 2a, to protect the sand spit from the effect of waves and currents, citizens have grown trees on the right sand spit while in the inside side of the sand spit, a series of shrimp pond banks have been built. These make the northern part of spit sand from Le Thinh inlet to An Hai inlet be protected. Thus, it hardly occurs the breaching at the northern part of sand spit under the influence of natural factors.

Figures 2a and 2b show the beginning and the ending of the northern part of the sand spit with the viewing point from An Hai and from Le Thinh inlets, respectively. These photos were taken during the field trip on December 25th, 2018. Standing from the south side of An Hai inlet and looking up to the north and standing from the position of Le Thinh inlet and looking back to the south, it is very clear to observe

¹Graduate student, Thuyloi University, 175 Tay Son, Dong Da, Hanoi, Vietnam

² Professor, Department of Civil Engineering, Tohoku University, 6-6-06 Aoba, Sendai 980-8579, Japan

³ Assistant Professor, Department of Civil Engineering, Tohoku University, 6-6-06 Aoba, Sendai 980-8579, Japan

⁴ Professor, Thuyloi University, 175 Tay Son, Dong Da, Hanoi, Vietnam

the height of sand spit which is relatively high and being protected by the casuarina cultivation. The inside part of sand spit is protected by the shrimp pond banks reinforced by concrete structures or bamboo types (as shown in Figures 2c, 2d). These types of reinforcement solutions are built by the locality along the sides of tidal channel using their funds. In order to take advantage and expand the aquaculture space, the people have organized themselves to build the embankment and gradually encroached on tidal channel, which reduces the area of the tidal channel.

Figure 2. Sand spit, breaching and shrimp ponds protection.

The main objectives of this study are to investigate the sand spit morphological changes of An Hai and Le Thinh inlets as well as the breaching mechanisms at An Hai area. The analyzed results have been indicated that the sand spit breaching occurred at a lower dune elevation and usually following by a big flood event.

2. Data Collection and Research Methodology

In this study, the authors apply the remote sensing image method that has been carried out by Pradjoko & Tanaka, 2011; Tanaka, Hoang, & Nguyen, 2017 for An Hai and Le Thinh inlets in Phu Yen province. Being considered as the data set used in this study, beside the photos taken during the field trips, Landsat images from 1988 to 2018 (Figure 3) and Google images from 2009 to 2018 (Figure 4) were utilized. Those images are rectified to the same coordinate system in the World Geodetic System 84 (WGS-84) with the coordinates of the origin of 312895,40E and 1474664,56N. The baseline is set at 160 degrees counter clockwise from the North. In this study, tidal correction was not performed since the maximum difference between shoreline positions before and after tidal correction is still smaller than the resolution of Landsat images. Spatial moving average was applied to reduce the effect of big scatter in shoreline positions due to the low resolution of the Landsat images.

Figure 3. Analysis the shoreline changes of sand spits by using the Landsat images

Figure 4. Analysis the shoreline changes of sand spits in Tuy An by using GG images

3. Results and discussion

In order to determine the increase in the area of shrimp ponds and the decrease in the area of the tidal channels over time, along with the observation of the width reduction phenomenon of Le Thinh inlet and the fluctuation of An Hai breaching over time, the authors have developed the basic definition in analyzing the extracted results of shoreline lines as shown in Figure 5.

Figure 5. Definition of the analyzed parameters of the sand spit (a) and tidal channel areas at Tuy An (b) in which: A₁: sand spit area; A₂: shrimp ponds area and A3: tidal inlet channel; B1: Le Thinh inlet width and B3: An Hai breaching width

Figure 6 represents the results of the analysis the B1, B3 parameters by using stateliness images in relation with the water level at Ha Bang hydrological station. Le Thinh inlet width, B1, tends to slightly decline from the analysis of both Satellite and Google images. It is easy to identify that the cause is due to the effect of diffraction wave and stream sediment transport. Based on the hydrological data of Cai river at Ha Bang station, it is noticeable that when big floods appeared on the Cai River, the breaching phenomenon occurred in the years of 1988, 1999, 2005, and 2010. Based on this hydrological data, it is also possible to see the relative correlation between the flow of the Cai River and the declining trend of Le Thinh Inlet width B1. One of the main causes of the breaching phenomenon in the An Hai Inlet area can be resulted from the impact of the local people. The activities can be mentioned such as reinforcing the spit sand locations along the tidal channel, expanding the aquaculture area by constructing the shores of shrimp ponds, encroaching on tidal channel surface area. When large flooding reaches tidal channel combined with the decline of the open surface of the tidal channel, the possibility of flood drainage through Le Thinh Inlet tends to decrease in width. As the result, the breaching phenomenon will occur. It can be seen that

the breaching of sand spit is influenced by large rivers.

During the period from 1988 to 2017, An Hai inlet were completely deposited for 3 times. The first period lasted for 10 years from 1989 to 1999; the second period was from 2007-2010 and the latest period was from 2011 to 2015.

Figure 6. The relation between B1, B3 and the monthly max. water level at Ha Bang hydrological station.

To analyze in detail the cause of the breaching of sand spit, the authors correlated the variation of sand spit area and the tidal channel surface area based on the results analysis using the Google images with high resolution. Because the size of shrimp ponds along the two banks of the tidal channel is relatively small and the resolution of Landsat images is not good enough to do these analyzes.

There is a declining trend of tidal water area within 10 years from 2009 to 2018 due to construction of fishery embankments from 170×10^4 to $90 \times 10^4 m^2$. At the same time, the throat width of Le Thinh Inlet is very small, fluctuated from 20 *m* to 60 *m*. This indicates that in order to maintain the volume of water in O Loan lagoon, the depth of Le Thinh Inlet must be deeper.

During the period from 2000 to 2006, the breaching phenomenon of An Hai inlet appeared constantly although the monthly maximum water level during this period was not too high. During the fieldwork, through interviews with the local residents, it was found that in the southern sand spit where closes to the location of An Hai Port, the people have transported a lot of sand at the breaching position of sand spit during this period to fill up the banks of shrimp ponds. This activity decreased the height of sand spit in comparison with its original level. Therefore, although the flood water level during this period was not so high, the overflow through breaching positions for a long duration is completely explained.

As can be seen in Figure 8, the results of GG image analysis showed the reduction of the tidal channel water surface area from 2009 to 2018 along with a sudden decline in the area of sand spit in 2015, which can be observed by the breaching phenomenon of sand spit in this year.

Figure 7. The relations of sand spit area, the tidal channel water surface area and the width of inlets

4. Conclusions

In short, sand spit morphological change of An Hai and Le Thinh inlets in Phu Yen province in the central of Vietnam has been figured out using satellite images in the last 30 years. Based on the analysis results, the breaching phenomenon of An Hai inlet and narrowing phenomenon of Le Thinh's inlet not only greatly depends on the flood flow regime but it is also being affected by the activities of the local people.

Acknowledgement

This work was supported by JSPS RONPAKU (Dissertation Ph.D.) Program. The authors would like to express their sincere gratitude for this support

References

- Eriksson, E.-L., & Persson, M. H. (2014). Sediment transport and coastal evolution at Thuan An Inlet, Vietnam. Lund University, Water Resources Engineering.
- Pradjoko, E., & Tanaka, H. (2011). Aerial photograph of Sendai coast for shoreline behavior analysis. *Coastal Engineering Proceedings*, 1(32), 92. https://doi.org/10.9753/icce.v32.sediment.92
- Tanaka, H., Duy, D. V., Yuta, M., Duc Anh, N. Q., Viet, N. T., & The, N. N. (2018). Sand spit elongation and sediment balance at the Cua Lo. *Journal of Japan Society of Civil Engineers*, Ser. B1 (Hydraulic Engineering), I_475-I_480.
- Tanaka, H., Hoang, V. C., & Nguyen, V. T. (2017). Investigation of morphological change at the Cua Dai River Mouth through satellite image analysis. *Coastal Engineering Proceedings*, 1(35), 9. https://doi.org/10.9753/icce.v35.sediment.9

Recent morphology change at Da Rang River mouth, Phu Yen, Vietnam

Nguyen Trong Hiep¹, Hitoshi Tanaka², Nguyen Xuan Tinh³, Nguyen Trung Viet⁴

Abstract

Da Rang River mouth, resembles many coastal areas in Vietnam, has been recently encountering significant changes induced by either nature or human involvement. The instability of sandspit's formation at Da Rang River mouth can be detected by two major phenomena which are migration of the river mouth after the 1993 flood and shrinkage of the south sandspit owing to human interference. This study, by utilizing one main source of satellite imagery: Landsat imagery, investigates the recent morphology and its variation thoroughly.

Keywords: Da Rang River mouth, the 1993 flood, human interference, migration.

1. INTRODUCTION

Da Rang River mouth has a typically deltaic shape that is common in the world. Since the past, numerous studies about the formation of delta coast had been made and yet still have been researched extensively lately. This study focuses on the dramatic reversal of river mouth mechanism due to human involvement. The observed phenomena of Da Rang River mouth are not obviously distinctive which were considered in many prior studies: migration of the river mouth and gradual disappearance of Southern sandspit. FitzGerald et al. (2000) discussed fundamentally the mechanism of ebb-tidal delta breaching at stable coasts where dominant of longshore sediment transport and asymmetric accumulation of sediment on either sides of river mouth leads to a severe deflection of the main channel. In more specific study, Patchanok Srivihok and Tanaka (2004), by using aerial photos, stressed the seasonal migration of Nanakita River mouth, Japan controlled by the dominance of longshore sediment transport. Sato et al. (2014) with abundant of bathymetric data characterized the formation and deformation of Tenryu River mouth, Japan trigged by floods, the formation of bar and trough topography bound with frequency of storm waves and erosion as

Figure 1: Study area

result of imbalance longshore sediment transport. The current situation of Da Rang River mouth is suspected that been causing by incidence of sand mining inside of river channel and the placement of beach protection construction on the South. This has already demonstrated widely, namely, Guangwei (2011) and Anthony et al. (2015) emphasized the same point of view of coastal erosion caused by the reduction of sediment supplied to coast owing to the impacts of major

- (1) Graduate Student, Department of Civil and Environmental Engineering, Tohoku University, 6-6-06 Aoba, Sendai 980-8579, Japan
- (2) Professor, Department of Civil and Environmental Engineering, Tohoku University, 6-6-06 Aoba, Sendai 980-8579, Japan
- (3) Assistant Professor, Department of Civil and Environmental Engineering, Tohoku University, 6-6-06 Aoba, Sendai, 980-8579, Japan
- (4) Professor, Department of Civil Engineering, Thuyloi University, Hanoi, Vietnam

dams and channel bed erosion triggered by sand mining.

Da Rang River mouth has received attention of many studies for last few years due to its complicated changes. Hoang et al. (2015) claimed the existence of the sand terrace in front of the river mouth contributing a great deal of sediment on both sides of the entrance. Tanaka et al. (2016) indicated the elongation of the right sandspit created severe erosion on adjacent area. And more recent, Cuong et al. (2016) discussed the nearshore hydrodynamics and sediment transport in Da Rang River mouth in a short term from 2015 to 2016 by abundant of field data obtained within that time. However, these researches mainly did not reflect the most recent change and such a debatable discussion between mechanism variations is vague. Therefore, this study will provide a comprehensive view on the mechanism of Da Rang River mouth by using Landsat images from 1988 to 2018.

2. STUDY AREA AND DATA COLLECTION

Da Rang River mouth is located in Tuyhoa City, south central Vietnam, away from from Ho Chi Minh City about 400 km in Northeast direction

Figure 2: Morphology variation at Da Rang River mouth (1988~2015)

(Figure 1). The river mouth belongs to the largest river in South Central of Vietnam, Ba River which has the main stream of 307km in length and total basin area of about 13300 km². At the entrance of the river mouth, the formation of the spits as the accumulation of sediment beyond the shoulder of banks have existed for many decades. The sandspits on both sides have been fed by sediment supplied from the river and incident waves. However, the interference of human activities also created such a big impact on this area which the rate of sand mining has rised rapidly for last few years. It is reported by the local government that in the period from 2015 to 2017, at least 7 dregding activities had been executed on different locations. where the sand mining focuses on the upstream river bed and the entrance of the river mouth.

Approaching waves are a vital factor on the varied shapes of the sandpsits since seasonal effects are highly noticeable. Da Rang River mouth is influenced by the monsoon climatic regime; Northeast monsoon prolongs from October to April and Southwest wind lasts from May to September.

The main source data of this study is Landsat imagery obtained from U.S Geological Survey (USGS) database from 1988 to 2018 (190 photos). Every images are rectified to one coordinate system by linear transformation (Affine transformation) having a baseline of 148 degree to the North. Shoreline detection was also implemented to all images by extracting the wet-dry line by the maximum gradient pixel and nearest neighbour method. The drawback of using Landsat is its low resolution which neglects the effect of tide on shoreline.

3. RESULTS AND DISCUSSION

3.1 Natural morphology variation of Da Rang River mouth (1988 – 2015)

Da Rang River mouth from 1988 to 2015 encountered an overwhelm change in its mechanism. Figure 2 indicates clearly the migration of the river mouth from the South to the North after a big flood 1993. This implies the

Figure 3: Morphology variation at Da Rang River mouth (2015~2018)

mechanism is turned into a new one which is more hydraulically efficient than the previous one due to a breakthrough by the flood. This new river mouth mechanism lasted for long period until late 2015. The mechanism during this period was discussed in detail by Hiep et al. (2016) which the predominance of longshore sediment transport or river mouth was cleared out thoroughly.

3.2 Morphology variation under impingement of human involvement (2015 – 2018)

In 2015, the closure of Da Rang River mouth nearly happened led to the urgent excavation to maintain the navigation channel. But the sand dredging was overdone that sand and gravel of some places inside the river mouth were intentionally taken way. And the elongation of the right sandspit caused a severe erosion on adjacent area that threatened the whole area behind that. With the aim of both reduction of wave heights at the shore and collection of more longshore transport of sediment, the former structures were 6 groins placed on the far South of Da Rang river mouth and the latter were several headland and detached breakwaters on the groins. Breakwaters are detached, generally shore parallel structures that reduce the amount of wave energy reaching a protected area. They are similar to natural bars, reefs or nearshore islands that dissipate wave energy. The reduction in wave energy slows the littoral drift, produces sediment deposition and a shoreline bulge or salient feature in the sheltered area behind the breakwater. Some longshore sediment transport may continue along the coast behind the nearshore breakwater. However, the downside took place consequently when the right sandspit was becoming smaller until hit by a big typhoon in 2017. The entire sandspits dissappeared and have not recovered afterwards as indicated in Figure 3.

3.3 Longterm morphological change

A simple analysis was conducted to investigate the longterm morphological change at Da Rang River mouth by comparing the entire shoreline data to the very first one. The expression of the analysis can be seen at Eq.1 below:

$$\Delta y(x,t) = y(x,t) - y_0(x) \tag{1}$$

The dark red area around 1993 in Figure 4 emphasizes the severe erosion on the left sandpsit which indeed the flood wiped out the entire left sand spit. Then the left sandspit was not be able to reach its previous position and as a result deposited to the Northern adjacent area. In the meanwhile, the South sandspit accretion appeared after the flood and prolonged further to the opposite side. This is because large sediment was attached on this area by ebb shoal in front of the river mouth and sand bypassing from the North side. The elongation of the sandpsit also triggered the erosion beyond it and became more severe until the 2017 typhoon emptied the entire South sandpsit.

3.4 Analysis of river mouth charateristics

Figure 4: Long-term shoreline change at Da Rang River mouth

To investigate the morphology change at Da Rang River mouth by a quantitative appoarch but not only by visual. Several vital quantities of the river mouth are defined which are the center point, x_C , y_C ; river mouth with, B; and area of each sandspit, A. Plus, yearly maximum fresh water discharge, Q_{max} from a hydrological station located far upstream from the entrance about 37 km is also brought up to make a contrast with river mouth parameters. The definition of these quantities and their measured values are shown discreetly in Figure 5.

The value of the centerpoint regarding

longshore direction reveals the movement of river mouth as the river mouth migrated to the left after the 1993 flood and its reverse on which the sandspit was getting smaller. between 2015 and 2018. With regard to crosshore direction, the specific trend is not able to be detected; however during the reduction period, the right sandspit was intruding into the upstream due to incident waves and lack of sediment from river mouth. The river mouth width also fluctuated through the entire period but 2 extreme values are those of two catastrophical events.

The area of two sand spits showed how

Figure 5: Definition and analysis of river mouth characteristics

dominant the growth of right sandspit was. Before the 1993 flood, the river mouth was stable although the area of two sandspit kept varying. After getting struck by the flood, the North sandspit was flushed almost entirely that the value of it nearly reached the bottom, while the South sandspit was faded away a smaller amount. The flushed sediment then stayed offshore and in front of the river mouth creating ebb shoal and bars. The recovery started immediately afterwards but the shoal and bars and dominant longshore sediment from South to North play their important roles to deposit plenty of sediment onto the right sandspit. This is why the South sandspit developed by a remarkable amount, whilst the North one remained constantly small. From 2015, the area of right sandspit was reducing to the amount of the left sandspit before they both went nothing after the 2017 typhoon.

The maximum fresh discharge data majorly referred to the flood events in Phu Yen and it is distinct to detect the extreme value caused by intensity of the 1993 flood.

4. CONCLUSIONS

Da Rang River mouth has a typical morphogolical change of a deltaic coast which can clearly be seen by the shoreline position varition. The shifting of the river mouth occurred when a new mechanism had been formed after the flood in 1993. This mechanism stayed stable till 2015 and to break this regime, it is believed to take decades or until next extreme event. However, since human started getting involved in the natural process, the equilibrium of river mouth has broken making severe erosion on two sandspits. With the lack of sediment from both main sources, which are sediment discharge from river and longshore sediment transport, it is presumed the recovery of sandspit is a tall order.

REFERENCES

- Anthony, E.J., (2015). Wave influence in the construction, shaping and destruction of river deltas: A review. Marine Geology, Vol. 361, 53-78.
- Cuong, K.N., Giang, T.N., Anh, N.T., Duc, D.D. and Vinh, N.T., (2016). Hydrodynamics and Short-term morphological change in the Da Dien Estuary of Phu Yen

Province, Vietnam. Proceedings of the 8th Asia-Pacific Workshop on Marine Hydrodynamics in Naval Architecture, Ocean Technology and Constructions, APHydro 2016.

- FitzGerald, D.M., Kraus, N.C. and Hands, E.B., (2000). Natural Mechanisms of Sediment Bypassing at tidal Inlets. Coastal and Hydraulics Engineering Technical Note ERDC/CHL CHETN-IV-30, U.S. Army Engineering Research and Development Centre, Vicksburg, MS.
- Guangwei, H., (2011). *Time lag between reduction* of sediment supply and coastal erosion. International Journal of Sediment Research, 26(1), 27-35.
- Hiep, T.N., Tanaka, H., Mitobe, Y., Viet, T.N., Hoang, C.V., Thanh, M.T., (2016). Shifting of Da Rang River mouth and its relationship with erosion on adjacent sandy coast. Journal of JSCE, Ser. B3 (Coastal Engineering), Vol. 72 (2016) No.2, p.I_1663-I_1668.
- Hoang, C.V., Tanaka, H., Viet, T.N., Binh , H.T.L., (2015). Analysis of shorel ine erosion at the Da Rang River mouth, south central Vietnam. Proceeding of Vietnam – Japan Workshop on Estuaries, Coasts and Rivers, September 2015, Hoian, Vietnam, VJWECR 2015, 60-68.
- Patchanok, S., Tanaka, H., (2004). Monitoring of river mouth morphology change by aerial photograph analysis. Annual Journal of Hydraulic Engineering, JSCE, VOL.48, 733-738.
- Sato, J., San-nami, T., Uda, T., Ishikawa, T., (2014). Field investigation of topographic response to floods and waves around Tenryu River mouth. Proceedings of 34th Conference, on Coastal Engineering, Seoul, 1-13.
- Tanaka, H., Hoang, C.V., Thanh, M.T., Hiep, T.N, Viet, T.N., (2016). Relationship between estuary morphology change and sand terrace formation at Da Rang River mouth, Vietnam, Journal of JSCE, Ser. B3 (Ocean Engineering), Vol. 72 (2016)

田んぼダム排水装置に応じた水田貯水量と許容降雨量の算定

日本大学大学院工学研究科土木工学専攻 竹田稔真 日本大学工学部土木工学科 朝岡良浩

1. はじめに

近年、気候変動に伴い豪雨発生頻度の増加等が起こりつ つありり、豪雨による洪水への対策として田んぼダムが着 目されている。田んぼダムは水田に専用の排水装置を設置 し、落水量を抑制することで降雨を水田に一時的に貯留し、 洪水被害を緩和する取組みである²。田んぼダムは平成14 年に新潟県村上地域振興局の担当者らによって発案され、 平成30年の現在、新潟県、兵庫県、山形県等で多くの実績 がある。また、郡山市や須賀川市³では田んぼダム実施を 見据えた実証実験を行っており、全国的に広まりつつある。

田んぼダムは水田が本来持つ貯水機能を活かしており, グリーンインフラとしての側面も持つ。しかし水田の最優 先すべき目的は営農であり,時期によって堰高さや田面水 深の変化,作業による畦畔高さの減少も考えられる。理想 的な田んぼダムとしての貯水量は畦畔高さに水田面積を 乗じたものであるが,実際の水田は水が張られており堰高 さも時期によって異なるため貯水量も変動する。また,降 雨時に田面水が畦畔から排水路に越流した場合,田んぼダ ム実施・未実施に関わらず排水路流量は増加する。以上よ り,田んぼダムが対応できる降雨には限界があるといえる。 既往研究は過去に洪水が発生した降雨イベントに対し、

田んぼダム事業を行った場合の浸水域や浸水深の減少を

図3田んぼダム未実施の概要

評価したもの49が多く、未知の降雨に対して解析した事例や畦畔からの越流について言及した例は少ない。そこで本研究では3種類の排水装置を対象として、人為的に操作される堰高さと初期田面水深を変化させた場合の許容降雨量と流出率の特性を明らかにすることを目的とした。本研究において、許容降雨量は地野から越流しない降雨量とする。また、洪水緩和機能の指標として降雨終了時の流出率についても評価した。

2. 排水装置概要と落水量算定式

(1)対象排水装置

本研究では3種類の排水装置を対象とした。田んぼダム排水装置は、コンクリート枡が設置されていない水田耕 区で用いる「フリードレーン」と「軽量落水枡」の2種類である。この2種類は田んぼダム向けの既製品として普 及している。比較対象として、水深調節を目的とする既製品の「水田用給排水口」を田んぼダム未実施とした。

^{*}Calclation of Water storage capacity and Allowable rainfall among different Drainage devices in the Rice field dam by Toshimasa TAKEDA and Yoshihiro ASAOKA

それぞれの排水装置からの落水量は落水量算定式のによって算出する。

(2)フリードレーンの概要

フリードレーンは、前澤化成工業株式会社より販売されている型番:NFD150A、製品名「ニューフ リードレーン150A」であり、装置の概要図を図1に示す。水深0~5cmでは式(1)に示す堰流れで落水 する。水深5~8cmは式(2)に示す遷移流れ、水深8cm以上では式(3)のオリフィス流れで落水し、遷移 流れまたはオリフィス流れであれば落水量を抑制し、田んぼダムとして機能する。

$$Q = E\pi \Phi_1 \sqrt{2g} \int_D^h \sqrt{z} \, \mathrm{d}z \tag{1}$$

$$Q=0.0001(h-D)+0.0031$$
 (2)

$$Q = \frac{C\pi \Phi_2^2}{4} \sqrt{2g(h+d)} \tag{3}$$

ここに、Q: 落水量(m³/s)、 ϕ_1 : 入口径(m)、 ϕ_2 :出口径(m)、g: 重力加速度(m/s²)、h: 田面水深(m)、d:装置長(m)、 D: 堰高さ(m)であり、EとCはそれぞれ堰とオリフィスの流量係数である。

(3)軽量落水枡の概要

軽量落水枡は東北興商株式会社より販売されている製品の型番なし、製品名「軽量落水枡 田んぼダム」であり、 装置の概要図を図2に示す。装置入口が水位調節機能を持つ堰として働き、調整板に設けたオリフィスから落 水する。落水量算定式は水田から式(4)の堰流れて枡に流入し、枡から水路に式(5)のオリフィス流れで落水される。

$$Q = EB\sqrt{2g} \int_{D}^{h} \sqrt{z} \,\mathrm{d}z \tag{4}$$

$$Q = \frac{C\pi\Phi^2}{4}\sqrt{2gh_2} \tag{5}$$

ここで、 **Φ**:調整板孔径(m), **B**:排水周長(m), h₂:枡内水位(m)であり、枡内水位は枡内の水収支式により求める。 (4)田んぼダム未実施の概要

本研究で用いたフリードレーンと軽量落水枡は排水孔がオリフィスとして機能することで落水量を抑制する。 また、田んぼダム事業を実施していない圃場では農家ごとに排水機構は異なる。上記の理由より、比較対象であ る田んぼダム末実施の場合は、堰流れで落水する田面水深調節のみを目的とした既製品を選定し、一般的な農家 の標準的な落水枡(図3)と仮定した。製品は株式会社サンポリの型番:なし、製品名:「水田用給排水口 水番 スマ ートタイプ」を用い、落水は式(5)に示す堰式で求める。

3. 水理シミュレーション概要

(1)シミュレーション手法

水田の水収支は次式で表すことができる。

$$\frac{\mathrm{d}h}{\mathrm{d}t} = R - \frac{Q}{A} \tag{6}$$

ここに、Q: 流量(m³/s), R: 雨量(m/s), A: 水田面積(m²)である。本研究では式(6)により田面水深変化を算出する。 計算のタイムステップは10分とした。なお、本研究は安全側を考慮して土中への雨水浸透は扱わないこととした。

 面を持つ。そのため、降雨終了時点における流出率も式(7)によって算出し、排水装置に応じた貯水能力の評価と した。また、初期田面水深は堰高さを越えないものとした。

$$流出率= \frac{
 累積落水量}{
 総雨量 × 水田面積} ×100
 (7)$$

(2)降雨波形の作成

本研究では水深が上昇しやすい後方集中波形を用い、降雨強度式は福島県郡山市ののものを基に作成した。表1 に示す許容降雨量はすべて200mm以上であることから、短時間で200mmの降雨は妥当でないと判断し、降雨継 続時間は24時間とした。

4. シミュレーション結果

堰高さ0,5,10,15cmにおいて,初期田面水深を0cmから堰高さと同じ水深まで変化させた場合の許容降雨量 について解析した結果を表1に示す。表1の右端には、それぞれの堰高さにおいて初期田面水深が最大となる場合 の流出率を示した。流出率は式(7)により算出した。また、初期田面水深に対する許容降雨量の変化はそれぞれ堰 高さ0cmでは図4,堰高さ5cmは図5,堰高さ10cmは図6,堰高さ15cmは図7に示す。

解析の結果、各装置間で許容降雨量を比較した場合、どの条件においても田んぼダム未実施よりも軽量落水枡 とフリードレーンは小さい値を示した。この結果より、田んぼダムをしなければ水田に降った雨を多く流出する ため溢れにくいが、田んぼダムを実施した場合溢れやすくなるが同時に水田からの流出を抑制するといえる。ま た、軽量落水枡とフリードレーンの許容降雨量を比較した場合どの条件においても軽量落水枡が小さい値を示し ており、フリードレーンよりも軽量落水枡の方が流出抑制効果は高いことが示唆された。

次に、同じ装置で堰高さと初期田面水深の違いによる性能の変化を検討した。それぞれフリードレーンは図8、軽 量落水枡は図9、田んぼダム未実施は図10に示す。

フリードレーンの場合、堰高さまたは初期田面水深が上昇するにつれて許容降雨量は減少した。また、流出率は堰高さの増加に伴い上昇する傾向があった。

軽量落水枡の場合,フリードレーンと同様に堰高さと初期田面水深が上昇するにつれて許容降雨量は減少し, 堰高さに応じて流出率も上昇した。

田んぼダム未実施では初期田面水深や堰高さにかかわらず流出率は約60%程度となった。軽量落水枡とフリード レーンの流出率が※20~40%程度であることから田んぼダム排水装置による流出抑制効果が示された。また、初期 田面水深に応じた許容降雨量の変化は非常に小さいことから貯水能力は堰高さのみに依存する。

5. 考察

本研究の結果について特に考察すべき事項が2つ挙げられる。

1つ目が許容降雨量は最小でも238mm/day,最大の場合は691mm/dayと現実であれば100年に一度を超過する値で あり、流域で考えた場合は大洪水が予想される。この要因として、本研究は水田のみを対象としたためと推察さ れる。実際に水田耕区全体に雨が降った場合、水田に降雨が貯留されると同時に用水路と排水路の流量も増 加する。用水路の流量が増加した場合いずれは水路と接する畦畔を越流して水田に水が流れ込む。また、排水路 の流量が増加した場合は水田への越流に加えて、排水装置の出口部が水で覆われることにより排水が抑制され、 田面水深が減少せずに結果として水田の水も溢れやすくなることが考えられる。本研究は装置の違いによる特性 を明らかにすることを目的としたため水田のみを対象とした。今後の課題として、用排水路の条件も考慮した許 容降雨量の算定が挙げられる。

2つ目はフリードレーンと軽量落水枡の落水機構の違いによる流出率の差である。 堰高さ0cmの場合, フリード

							ł	初期田面	水深(cm)							法山夜(*)
返向UCM	0																元田平(%)
フリードレーン	420									30.6							
軽量落水枡	372																19.4
田んぽダム未実施	691																60.1
荷山をきる							ł	初期田面	水深(cm)							计 (1) (1)
地面して田	0	1	2	3	4	5											加山平(%)
フリードレーン	379	376	373	371	370	368				_							34.5
軽量落水枡	349	344 339 335 331 328							23.8								
田んぼダム未実施	579	579	579	579	579	579											60.1
恒亡10		初期田面水深(cm)								法山夜(4)							
收向IVCM	0	1	2	3	4	5	6	7	8	9	10						元百平(%)
フリードレーン	342	337	332	327	323	320	317	315	314	313	312		/				38.9
軽量落水枡	328	321 314 308 303 298 293 290 287 284 283							29.5								
田んぼダム未実施	462	461	461	461	461	461	461	461	461	461	461						59.7
原言なら							ł	初期田面	水深(cm)							素山素(4)
璼尚15cm	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	流出平(%)
フリードレーン	317	309	301	294	287	280	274	269	264	260	257	255	253	252	252	251	40.2
軽量落水枡	313	304	296	288	280	273	266	259	253	249	244	241	239	238	238	238	37.1

初期田面水深(cm)

図5 堰高さ5cmの許容降雨量

レーンの流出率30.6%,軽量落水桥の流出率は19.4%で両者の差は11.2%であった。しかし、堰高さ15cmの場合フ リードレーンの流出率は40.2%,軽量落水桥は37.1%と両者の差は3.1%に縮まった。この理由として、流出率は式 (7)を用いて算出し、分子は落水量となる。フリードレーンは堰高さを上げるつれて落水量は減少するが、軽量落 水桥は堰高さを上げるにつれて落水量は増加する。また、式(7)の分母である許容降雨量は両者とも堰高さを上げ るにつれて減少する。その結果、フリードレーンは堰高さの変化による流出率の増加は小さく、軽量落水桥は堰 高さの変化による流出率の増加が大きくなる。この原因は装置の落水機構の違いによるものである。

6. まとめ

本研究ではフリードレーン,軽量落水枡,田んぼダム未実施の3種類の排水装置に応じた水田貯水量と許容降雨 量について算定し,更に計算値を比較検討することで装置の特性について言及した。得られた知見を以下に示す。 1) フリードレーンと軽量落水枡は堰高さに応じて許容降雨量は減少し,流出率は増加した。また,初期田面水 深に応じて許容降雨量は減少した。田んぼダム未実施では堰高さに応じて許容降雨量は減少し、流出率は減少した。また、流出率は約60%前後であり田んぼダム排水装置に比べて高い値であった。初期田面水深に応じて許容降雨量はわずかに減少する傾向にあった。

- 2) 堰高さ0cm,初期田面水深が0cmの場合、フリードレーンの流出率は30.6%、軽量落水枡は19.4%で両者の差は 11.2%であった。堰高さ15cm,初期田面水深が15cmの場合フリードレーンの流出率は40.2%、軽量落水枡は 37.1%で両者の差は3.1%となった。この結果から堰高さが上がるにつれて軽量落水枡とフリードレーン間での 貯留能力の差は小さくなるといえる。この原因として、フリードレーンは越流水深の関数として落水量が求 めるが、軽量落水枡は枡底高さに水田水深を足した値の関数として落水量を求めるためと考えられる。
- 3) 流出率は堰高さに比例して上昇するが、フリードレーンと田んぼダム未実施の場合、累積落水量は堰高さに応じて減少した。落水量は水深を変数に含む式によって算出されるため、越流水深の最大値が30cmの堰高さ0cmの場合よりも、越流水深の最大値が15cmとなる堰高さ15cmのほうが落水量の最大値は小さくなるためこのような結果になった。
- 4) 軽量落水枡は堰高さに比例して流出率も累積落水量も上昇した。軽量落水枡は枡内の水深で落水量を算出するため田面水深の影響を受けない。加えて堰高さ0cmと15cmの間で流出率は約2倍となったため許容降雨量は減少したが実際の流出量は増加したと考えられる。

本研究において堰高さと初期田面水深は表1の値を用いたが、実測値がある場合はパラメータを変更することで 再計算は容易に可能である。また、装置の寸法によって許容降雨量や流出率は変動するが排水機構は同様である ため、装置の堰高さまたは初期田面水深に応じた水田貯水量と許容降雨量の変化傾向は同様になると推察される。

現場への適用に際し、実際の畦半は整備不足等で30cmに満たない場合が多いことや、田面水が畦半から越流する原因として用水路からの氾濫水流入がある。前者であればパラメータの変更によって対応できる。後者は流出 モデル等で流域全体について解析する必要があり、今後の課題の一つである。

参考文献

1) 気象庁:気候変動監視レポート2017:

https://www.data.jma.go.jp/cpdinfo/monitor/2017/pdf/ccmr2017_all.pdf, 2018.

2) 農林水産省:

http://www.maff.go.jp/j/nousin/noukan/new_tamen/kouzui.html, 2018.

3)須賀川市:建設部:田んぼダムについて、http://www.city.sukagawa.fukushima.jp/10853.htm

4)吉川夏樹, 宮津進, 安田浩保, 三沢眞一:低平農業地帯を対象とした内水氾濫解析モデルの開発, 土木学会論文集 B1(水工学), Vol.67, No.4, I 991-I 996, 2011.

5)吉川夏樹,長尾直樹,三沢眞一:田んぼダム実施流域における洪水緩和機能の評価,農業農村工学会論文集, No.261, pp.41-48, 2009.

6) 竹田稔真・朝岡良浩(2018): 田んぼダム排水装置による降雨貯留能力の比較, 土木学会論文集G(環境), Vol.74, No.5, pp.I 125-I 132.

7) 農林水産省:土地改良事業計画設計基準計画「ほ場整備(水田)」,

http://www.maff.go.jp/j/council/seisaku/nousin/gizyutu/h24-1/pdf/data2-2.pdf, 2018.

8)福島県:県内の降雨強度式, https://www.pref.fukushima.lg.jp/uploaded/attachment/53861.pdf, 2018.

橋梁部における杉の堆積に関する水理模型実験*

秋田大学工学理工学部 西脇 遼

秋田大学大学院理工学研究科 齋藤 憲寿

秋田大学大学院理工学研究科 渡辺 一也

1. はじめに

台風や大雨に伴う河川の増水によって流木が発生し,流出した流木が橋梁などの河川構造物に堆 積することで水位上昇が生じ、洪水が拡大する被害が国内で多発している。一例として、2016年8 月の岩手県豪雨災害では流木の発生と橋梁への堆積によって小本川が氾濫し, 甚大な被害を及ぼし た¹⁾²⁾。小本川の氾濫に見られたような流木による被害は、杉林が豊富な秋田県内においても発生 する可能性があり、その流出過程を知ることは重要である。

そこで本研究では、実際の河川と橋梁をモデルとした水理模型実験を行い、橋梁への流木の堆積 過程, 堆積した際の水位, 堆積本数, 橋梁に堆積した流木の間隙などを計測し, 流木の堆積状況に ついての検討を行った。

2. 研究対象

本研究でモデルとした河川と橋梁は、2016年8月に台風10号による豪雨災害が発生した小本川 である。現地で測量を行い、橋梁の全長 98 m、川幅 54 m、水面からの橋脚の高さ 4.6 m、橋桁の高 さ1.8 m, 欄干の高さ1.1 m, 道路の幅員 3.7 m という値を得た。

3. 実験方法

実験は直線矩形開水路に橋梁の模型を設置し、流木の模型を水路の一方の端から投入して行った。 橋梁模型はアクリル板を用いて作製した。縮尺は小本川の川幅 54 m と実験水路の幅 300 mm の比 より1/180とした。模型は単断面の橋梁として、橋脚が中央に1本の2スパンとなっており、橋脚 幅は 20 mm,橋梁幅員 20 mm,橋桁厚 10 mm,欄干高さ 10 mm,橋脚と橋梁端部の間隔を 140 mm とした。橋梁模型の設計図を図-1に、水路に設置した模型を写真-1に示す。

写真-1 橋梁模型

実験で用いる水路は長さ9.0m,幅0.3m,高さ0.5mであり,水路底面は固定床である。橋梁模 型は流木投入地点から 5.3 m の地点に設置した³⁾。実験で使用した流木模型は針葉樹の杉である。

*Experimental Study on Accumulation of Cedar at the Bridge by Ryo NISHIWAKI, Noritoshi SAITO and Kazuya WATANABE

杉の直径は実スケールにおいて1mと想定して、模型流木直径は0.5 cmとした。

本実験においては、「流木の長さに関する実験」(Case A) と「混合流木に関する実験」(Case B) と「流量変化に関する実験」(Case C) の3種類の実験を行った。Case A の実験では、3種類の長さの異なる流木模型を用いて堆積状況を観察した。想定する流木の長さは20 m, 25 m, 30 m である。小本川での災害時の流木発生量1500 m³より¹⁾流木長ごとの本数を算出した。流木模型の長さと本数を**表-1** に示す。流木の比重は乾燥状態で

0.38 であり、4 日間水につけた湿潤状態で比重は 0.87~0.97 であった。実験では湿潤状態を使用した。 水路に水位 5 cm となるように水を流し、橋桁下部 と水面の隙間を無くした。ビデオを用いて橋梁模

表-1 流木模型の長さおよび本数

模型流木の長さ	12 cm	15 cm	18cm
想定する流木の長さ	20 m	25 m	30 m
投入本数	100本	80本	60本

型を設置した箇所の横と上から,流木が堆積する様子を記録した。流木は1秒に10本ずつ投入した。流木長ごとに5回ずつ,合計15回実験を行った⁴⁾。流木の堆積状況は,流木堆積率で評価した。流木堆積率は式(1)で表される。

流木堆積率(%) =
$$\frac{$$
^{推積した流木の本数} × 100 (1)

Case Bの実験では長さの異なる3種類の湿潤状態の流木を混合して流し,堆積状況を観察した⁵。 小本川での災害時流木発生量1500 m³を基に体積を統一した場合(Pattern 1.1, Pattern 1.2)と合計本数 を100本に統一した場合(Pattern 2.1, Pattern 2.2)の2つの実験を行った。各実験の流木本数を表-2 と表-3に示す。Case Aと同様に水位5 cmとなるように水を流し,流木は1秒に10本ずつ投入し た。体積を統一した実験は Pattern 1.1 と Pattern 1.2 ともに2回ずつ,本数を統一した実験は Pattern

2.1 と Pattern 2.2 ともに 3 回ずつ実験を行った。
 流木の堆積状況の評価には流木堆積率を用いた。

Case C の実験では数パターンの流量を設定し て,流量ごとに流木の堆積状況の違いが見られる か検証を行った。)。設定した流量と流木が無い状 態での水位を表-4 に示す。長さ 12 cm の湿潤状 態の流木を 100 本使用し,1 秒ごとに 10 本ずつ 投入した。流木の堆積状況は,流木堆積率で評価 した。さらに流量を 6.3 L/s に設定して,流木が橋 梁に堆積した状態で水を抜き,橋脚と橋梁両端の 間のスパンの断面において,堆積した流木はどの くらいの断面積を占めているかを上流側から観 察し,間隙率として評価をする実験を行った。間 隙率は式(2)で表される。

表-2 体積を統一した混合流木のパラメータ

		Pattern 1.1	Pattern 1.2
	18 cm	16本	11本
各流木の本数	12 cm	44本	23本
	6 cm	50本	96本
投入本数	攵	110本	130本

表-3 本数を統一した混合流木のパラメータ

		Pattern 2.1	Pattern 2.2
	18 cm	14本	8本
各流木の本数	12 cm	40本	18本
	6 cm	46本	74 本
投入本数	女	100本	100本

表-4 流量と水位

流量	3.6 L/s	4.5 L/s	5.4 L/s	6.3L/s
水位	3.50 cm	3.98 cm	4.37 cm	4.84 cm

間隙率(%) = $\frac{$ $\frac{$ 推積した流木によって塞がれたスパンの断面積}{橋梁のスパンの断面積} × 100

92

4. 実験結果

Case A の実験より得られた,流木が橋梁に堆積 した様子を写真-2 に示す。流木が橋梁にぶつか り堆積するとともに,上流側の水位が上昇して最 終的に越流をする様子が確認できた。水位は約 2~3 cm 上昇した。下流側では水位の低下が確認 でき,水位は約1 cm 低下した。

図-2 に流木長 *l* と流木堆積率の関係を示す。 流木の長さが長いほど,流木が橋梁に堆積しや すいことが確認できた。流木長ごとの流木堆積 率は,長さ 12 cm では 25~40 %,15 cm では 30~60 %,18 cm では 60~80 %であった。分布の 範囲は 15~30 %であり,長さ 15 cm の流木堆積率 のばらつきが 3 種類の流木長の中で最も広範囲 であった。これは流木長が橋梁の1 スパンの間 隔 13 cm よりも少し長いため,橋梁に多く堆積 する場合とあまり堆積しない場合の2 種類に分 かれるためと推測される。

図-3 に経過時間 t と上流側の水位変化の関係 を示す。水位は超音波式波高計を,橋梁模型中央 から 5 cm 上流側の位置に設置して,100 秒間計 測した。流木は水位の計測開始 10 秒後から,1 秒 ごとに 10 本投入した。流木投入してから橋梁に 流木が堆積し始めると,上流側の水位が上昇して いるのがデータより読み取れた。流木長が 18 cm と 15 cm の場合は水位が 8 cm 以上であったが, 12 cm の場合は水位が 8 cm 以下となることがデ ータより読み取れた。

図-4 に水位 η と流木堆積率の関係を示す。水 位は流木が堆積した際,橋梁模型の中央から上流 側 5 cm の水位と下流側 5 cm の水位をポイントゲ ージで測定した。上流側の水位は流木長と流木堆 積率に関わらず,約 7~9 cm の水位となることが わかった。また下流側の水位も同様に流木長と流 木堆積率に関わらず,約 2~3 cm の水位となるこ とがわかった。上流側の水位にあまり違いが見ら

写真-2 横方向からの流木堆積の様子

図-2 流木長と流木堆積率の関係

れないのは,流木が橋梁に堆積したのち,越流に 至るまでの充分な時間経過後に水位の計測を行っ たためと推測される。

図-5 に流速 u と水位 η の関係を示す。流速は流 量計によって計測される流量 Q とポイントゲージ で測定する水位 η と水路幅 B を用いて連続式で求 めた。連続式は式(3)で表される。

$$Q = \eta \times B \times u \tag{3}$$

水位が高いほど流速が小さくなることが確認で きた。また、上流側の水位と下流側の水位が流木 長に関わらずあまり違いが見られないことに従っ て、流速も流木長ごとにあまり違いが見られないこ とが判明した。

Case B の体積を統一した混合流木の実験により 得られた,平均流木長と流木堆積率の関係を図-6 に示す。混合した流木の長さの平均値を平均流木長 *I*mean と定義した⁷)。平均流木長が長いほど流木が堆 積しやすいことが確認できた。また,図-2の流木長 12 cm と比較すると,平均流木長 10 cm の Pattern 1.1 の場合,流木堆積率は 40%前後と堆積率はあまり違 いが見られなかった。したがって長い流木が混合し ていると,平均流木長が小さい場合でも,橋梁に堆 積しやすいと考えられる。

図-7 に平均流木長と水位の関係を示す。平均流 木長の違いによる,下流側の水位の違いは見られな かった。しかし上流側の水位の違いは Pattern 1.1 が Pattern 1.2 よりも水位が高くなった。

Case B の本数を統一した混合流木の実験より得られた,平均流木長と流木堆積率の関係を図-8 に示す。平均流木長が長いほど流木が橋梁に堆積しやすいと考えられ,図-2の流木長と流木堆積率の関係と同じ傾向を示していた。Pattern2.1の流木堆積率は20%~60%と分布の範囲が40%と広くなっていた。これは長い流木が橋梁に引っかかり、それに従って短い流木も堆積していくため、長い流木の橋梁への引っかかりに流木堆積率が依存して,

図-8 平均流木長と堆積率の関係(本数統一)

ばらつきが見られたと推測できる。Pattern 2.2 の混合流木は橋梁にほとんど堆積しなかった。

図-9に平均流木長と水位の関係を示す。平均 流木長の違いによる,下流側の水位の違いは見 られなかった。Pattern 2.1の上流側の水位は図 -4の水位と同じく約7~9 cm となった。Pattern 2.2の上流側の水位は約6~7 cm と水位の違いが 見られた。これはPattern 2.2 の際,橋梁にほと んど流木が堆積しなかったため,水位上昇が小 さくなったと推測できる。図-6の体積を統一し た場合の平均流木長と水位の関係と似た傾向 が見られた。

Case C の流量に関する実験より得られた,流 量と流木堆積率の関係を図-10 に示す。流量が 4.5 L/s と 6.3 L/s の場合 20~40 %の流木堆積率 が確認できた。また流量が 3.6 L/s と 5.4 L/s の 場合 0~10 %の流木堆積率が確認できた。流量 が 6.3 L/s の場合の流木堆積率は, Case A の実 験の場合と近い値となった。また流量が 4.5 L/s の場合と 5.4 L/s の場合で流木堆積率に違いが 出たのは,橋桁下部と水面の間隔と流速が関係 していたと推測され今後検討が必要である。

図-11 に流速と流木堆積率の関係を示す。上 流側では流木が堆積するほど流速が小さくな ることが読み取れた。しかし下流側には,流量 4.5 L/s の場合よりも流木の堆積本数が少なかっ た流量 5.4 L/s の場合に流速が大きくなってお り,流木の堆積率と流速の関係についてはあま り見ることができなかった。これは下流側の水 位低下の違いが見られなかったためと推測さ れる。

橋梁に流木が堆積した様子を上流側から撮 影したものを写真-3に示す。流木の堆積が橋梁 の左側に集中していることが確認できた。この 実験では12 cm 流木を100本流したところ,21 本が橋梁に堆積した。橋梁のスパンの断面積が

写真-4 流木が 49 本堆積した状態

130 cm²であり、**写真-3**において間隙の面積を求めると、72 cm²となった。間隙率を式(2)より求めると、55%となった。

写真-4 は写真-3 と同様に橋梁に流木が堆積した様子を上流側から撮影したものである。流木の 堆積は橋脚に集中していることが確認できた。この実験で12 cm 流木を100 本流したところ,49 本 が橋梁に堆積した。写真-4 において間隙の面積を求めると27.5 cm²となった。間隙率は21 %であ った。このことから流木の堆積本数が多いほど,間隙率が小さくなることが確認できた。流木の橋 梁への堆積は,橋梁の一端に集中する場合と橋脚に集中する場合の2 種類が実験により確認できた。

5. 終わりに

本研究では杉の流木が橋梁に堆積した際に,流木がもたらす水位変化や間隙などへの影響を評価 した。その結果,以下の知見が得られた。

- 投入する流木の長さや混合率を変化させた場合、単一の流木および混合流木の長さが長いほど、 流木堆積率が大きいことが確認された。
- 2) 単一の流木長を流下させた場合、上流側と下流側の水位にあまり変化は見られなかった。流木 長が橋梁の1スパンより少し長い場合、上流側の水位に差が見られた。
- 3) 同じ本数の流木を流下させた場合であっても堆積本数に差があり、その間隙率は21%と55%で あった。
- 4) 流量の増加によって流木堆積率が増加することが判明した。しかし、5.4 L/s の時に明確な傾向 が見られなかった。今後は、5.4 L/s の時に流木堆積率が小さい原因の究明を行う予定である。

参考文献

- 加藤一夫,小笠原敏記,松林由里子,渡辺一也,三浦忠昭,菅野貴詳,山口里美,渡邊康玄, 赤堀良介,千葉喜一:小本川の流木捕捉施設設計に関する水理模型実験による検討,河川技術 論文集,第24巻,2018.
- 土屋十圀,小山直紀,大石裕泰,佐伯博人:2016 年 8 月の台風 10 号による岩手県北部水害調 査報告,自然災害 J.JSNDS, Vol.36, No.4, pp.409-427, 2018.
- 3) 長谷川祐治,中谷加奈,里深好文,藤田正治:山地河川における流木の流下と橋梁集積に関す る検討,第8回土砂災害に関するシンポジウム論文集,pp.133-138, 2016.
- 長谷川祐治、中谷加奈、里深好文、藤田正治:流木の流下と橋梁への集積に関する実験、京都 大学防災研究所年報、No.58B、pp.350-357、2015.
- 5) 渋谷一,香月智,大隅久,石川信隆:根付き流木モデルによる流木捕捉工の捕捉効果に関する 実験的検討,構造工学論文集,Vol.57, pp.1087-1094, 2011.
- (6) 矢部浩規, 渡邊康玄: 流木の堆積, 捕捉調査と河道流況特性について, 水工学論文集, 第52巻, pp.661-666, 2008.
- 7) 渋谷一,香月智,大隅久,石川信隆,水山高久,流木捕捉工の捕捉性能に関する実験的研究, 砂防学会誌, Vol.63, No.3, pp.34-41, 2010.

UAV を用いた砂州の地形変化についての検討* ~馬場目川を対象として~

秋田大学理工学部 藤澤 尚矢

秋田大学大学院理工学研究科 齋藤 憲寿

秋田大学大学院理工学研究科 渡辺 一也

1. はじめに

近年,全国的にゲリラ豪雨などの集中豪雨による洪水被害が多発する状況にある。秋田県に おいては2017年7,8月の集中豪雨や2018年5月の浸水被害など甚大な被害が生じており¹⁾, 秋田県最大の二級河川である馬場目川も非常に高い水位が観測され,左岸の堤防に洗掘が生じ た。河道に形成される砂州は流れを蛇行させる大きな原因であり,河道の変遷および河岸の被 災と大きく関係するため,河道管理において砂州の挙動を把握することは重要な課題とされて いる。しかし,国土交通省の調査²⁾によると,国管理の一級河川は全てにおいて定期縦横断測 量を実施しているが,馬場目川のような二級河川等は河川数が膨大である故に定期縦横断測量 の実施率は1%程度に留まっている。そのため,河川管理において定期的な現状把握が重要で あることから,簡易的に維持管理を行う手法として UAV (Unmanned aerial vehicle) に着目した。

UAV を用いた測量に関しては、小花和ら³⁾のアクセス困難な場所での測量に利用する提案 や、松葉ら⁴⁾の UAV を用いた海岸地形モニタリング手法の構築などすでに多くの研究が行われ ており、河川においては、河合ら⁵⁾の堤防や護岸などの河川管理施設の 3D モデル化による河 川管理の提案がされている。

本研究では、馬場目川を対象とし、UAV を用いて空中写真を撮影し、SfM 処理を行い、処理デ ータから砂州の挙動を観察するとともに、砂州の挙動と水位の関係について定量的に評価した。

2. 研究方法

(1) 対象河川

図-1に示す馬場目川は、その源を秋田 県南秋田郡五城目町の馬場目岳に発し、周 囲の支川を合わせて八郎潟調整池に入り、 船越水道を通り日本海に注ぐ、流域面積 910.5 km²,幹川流路延長47.5 kmの秋田県 最大の二級河川⁶⁾である。本研究の対象領 域は図-2に示す延長約850 mの領域であ り、川幅は領域内を通して約30 m程度で ある。また、図中赤線の矢印は流路方向を 示す。

*Study on the Sandbar of Topographical Change using UAV : As a target Babame River by Naoya FUJISAWA and Kazuya WATANABE

図-2 対象領域全体の様子(延長約 850m)

図-3 対象領域の拡大図(図-2の破線で囲まれた領域)

写真-1 洗掘が生じた左岸の様子(2018年8月22日撮影)

写真-2 観測対象の砂州の様子(2018年8月22日撮影)

図-3は図-2中の破線内の拡大図である。左岸では、写真-1に示す2017年7,8月の集中 豪雨により洗掘が生じた場所がある。また、河川右岸の湾曲部には農作業用の取水口があり、 低水位時において水が溜まるように横断構造物によって水路を狭窄しているため取水口付近に は砂州が生じている。本研究では図-3に示す領域内河川左岸の湾曲部後の砂州に着目し、観 測対象とした。観測対象砂州の斜め写真を写真-2に示す。

(2) 現地観測

UAV により上空 150mから1 枚あたり約 215 m×115m の空中写真を対象領域の全体 850 m内 で 50~60 枚程度を撮影し,縦横 80%程度オー バーラップするように,河川に沿って撮影を行 った。表-1 に今回使用した UAV のスペック, 表-2 にカメラのスペックを示す。なお,カメ

ラの画像サイズはアスペクト比16: 9を採用した。現地観測は水位平常時の2017年9月11日,2018年8 月3日,11月28日,増水時の2018 年8月22日,9月7日の計5回行った。

表-1 UAV のスペック

重量	1388 g
対角寸法	350 mm
最大上昇速度	5 m/s
最大下降速度	3 m/s
ホバー精度	垂直:±0.5 m/水平:±1.5 m
最高速度	50 km/h
飛行時間	約30分

表-2 カメラのスペック

センサー	1インチCMOS, 有効ピクセル数:2000万画素
	アスペクト比3:2:5472×3648
画像サイズ	アスペクト比4:3:4864×3648
	アスペクト比16:9:5472×3078

(3) SfM 処理

撮影した空中写真をソフトに取り込んで 3D モデリング化を行い, PhotoScan による SfM 処 理によって得られた画像から観測対象の砂州の挙動を定性的に把握するとともに, 観測対象の 砂州の面積 *A*, 砂州長 *L*(砂州の流路方向の最大の長さ), 砂州幅 *B*(流路に対して垂直方向の 最大の長さ)を導出した。

また,水位 η については図-1 に示す久保観測所のデータを利用した。なお,観測対象にお いて平常時の水位は 0.88 m 付近であった。

3.結果・考察

河道に砂州が形成されている状態で河 岸浸食が発生する流量が流れると,通水直 後から河岸浸食が発生する⁷¹ため,砂州の 形態の把握は重要である。また,砂州形態 が変化する水理条件は桑村ら⁸⁰の実験によ って確認されており,平常時の砂州形状や 流路の蛇行形状だけでなく,洪水ピーク付 近の砂州形態や砂州形状,水流の蛇行を想 定することが重要であると述べている。よ って降雨などイベントの前後における考 察が必要であると考え,水位と砂州の挙動

図-4 2017年9月11日の様子

の関係性を考慮することにした。

まず,図-4に示す2017年9月11日の様 子では,湾曲部後の砂州によって河川の流路 が最小で6.8 mと川幅の2,3 割程度の大き さになるまで狭窄している。また,観測水位 は0.81m であり,水位は平常時よりも低い状 態であった。

図-5に示す2018年8月3日の様子では, 砂州が河川の流路が最小で8.2mと川幅の3 割程度になるまで狭窄している状況である。 また,観測水位は0.88mであり,対象領域の 平常時に近い状態であった。

図-6 に示す 2018 年 8 月 22 日の様子で は、図-5 と比べて湾曲部後の砂州の面積が 2947.0m²から 1159.7 m²まで小さくなってお り,河川の流路は最小で 18.0m と川幅の 6 割 程度まで広がっていた。また、観測水位は 1.18m で平常時より高く、降雨によって水位 が上昇したことで砂州が小さくなっていた。

図-7に示す 2018年9月7日の様子では, 湾曲部後の砂州において,図-6と比べて砂 州の面積が 1159.7 m²から 1153.1 m²まで小 さくなっており,一部分が流出している様で あったが,観測水位は 1.24m であり,8月22 日よりさらに水位が上昇していたため,一部 分の流出ではなく,水位上昇による変化と考 えた。

図-8 に示す 2018 年 11 月 28 日の様子で は、再び湾曲部後の砂州が河川の流路を狭窄 するように砂州が拡大している様子であっ た。しかし、砂州の面積は 1665.2 m²,河川の 流路は最小で 14.8m と川幅の 5 割程度であ り、2018 年 8 月 3 日と同じような状態には 戻らなかった。また、観測水位は 0.89m であ り、対象領域のほぼ平常時の水位であった。

8月22日と9月7日は8月15日の降雨に より河川の水位が急増していた期間であっ

図-5 2018 年 8 月 3 日の様子

図-6 2018 年 8 月 22 日の様子

図-7 2018年9月7日の様子

図-8 2018年11月28日の様子

Date	Area[m ²]	η[m]	L[m]	B[m]
2017/9/11	3124.4	0.81	204	26.3
2018/8/3	2947.0	0.88	133	19.4
2018/8/22	1159.7	1.18	123	13.6
2018/9/7	1153.1	1.24	121	12.1
2018/11/28	1665.2	0.89	132	16.7

表-3 湾曲部後の面積の算出結果

たため、空中写真で確認することが可能である 水面上の砂州は小さくなっていた。ここで、本 研究は水面より上の砂州の形態の把握のみ行 っていたため、今後は断面測量を行い、水面下 の砂州の形態の把握も一緒に行う必要がある。

11月28日は降雨後に水位が平常に近い状態 に戻っているが,砂州は降雨イベント前より 1000m² 近く減少していたため,これは降雨イ ベントにより砂州が流出したのではないかと 考える。

次に,対象砂州のA,L,Bと撮影時の水位 η について表-3に示す。A, L, Bについては SfM 処理によって得た 3D モデルからソフト 内の面積計算,測距を用いて導出した。これら より n と対象砂州の A, L, B それぞれとの関 係性について検討した。η と A の関係を図-9, *n*とBの関係を図-10に示す。A, L, Bの 関係を図-11 に示す。水位が平常時の 0.88m 以下の場合, A, L, B 全てにおいて急激に増加 するが,大雨などにより水位が上昇した場合 は緩やかに減少した。図-11ではAの増加に対 してLよりもBの増加が大きく,Bが敏感に変 化することを把握した。また,表-3に示す8月 3日と11月28日を比較した場合, η と L はほ ぼ同じ値であるがAは1281.8 m², Bは2.7 m減 少した。これは、8月15日の降雨により水位が 上昇し,砂州が掘削され,河川流路が拡大したと 考える。よってAの変化はLよりもBが大きく 作用すると考える。

4.まとめ

本研究では、河川管理の手法の一つとして、UAV を用いて空中写真を撮影し、SfM 処理を行った画像から、砂州の挙動を検討し、以下の結論を得た。

- 1) UAV を用いて撮影した空中写真に SfM 処理を行うことにより,砂州の動きの定性的把握や 砂州の A, L, B を簡易的に導出することができる。
- 8月3日と11月28日においてη, Lはほぼ同じ値であるが, A, Bは大きく変化したことからAの変化においてBが大きく作用すると考える。
- 3) 対象領域内における η と A, L, B は, η が平常時 0.88 m 以下になると急激に増加し,降雨 によって水位が上昇した時は緩やかに減少した。

今後は、UAV 測量による水面上の砂州の形態の把握とともに、河川横断面測量を行い、水面下の砂州の形態の把握を行う。また、水面上の砂州と水面下の砂州の関係性についても検討していく。

謝辞:本研究を行うにあたり,秋田県秋田地域振興局より馬場目川の水文データを提供して頂 いた。ここに記し,謝意を表する。

参考文献

- 1) 気象庁:災害をもたらした気象事例(平成元年~本年) <http://www.data.jma.go.jp/obd/stats/data/bosai/report/index_1989.html>(2018/12/3 アクセス)
- 河川管理の状況と課題-国土交通省 <www.mlit.go.jp/river/shinngikai_blog/shaseiseishin/...dai01kai/dai01kai_siryou2.pdf> (2019/1/6 ア クセス)
- 小花和宏之、早川裕弌、ゴメス クリストファー: UAV 空撮と SfM を用いたアクセス困難 地の 3D モデリング、地形、Vol35, No.3, pp283-294, 2014.
- 4) 松葉義直,佐藤愼司,波多野景治:静岡県福田浅羽海岸のサンドバイパス吐出口周辺における UAV を用いた地形変化監視手法の適用,土木学会論文集 B2(海岸工学), Vol 72, No.2, I 853-I-858, 2016.
- 5) 河合悠希,窪田諭:3次元モデルを用いた河川管理施設の維持管理システムの提案,情報処理学会研究報告, Vol2015-IS134, No.4, 2015.
- 6) 秋田県:二級河川馬場目川水系 河川整備基本方針,2007.
 http://www.pref.akita.lg.jp/pages/arghive/10601 (2018/12/17 アクセス)
- 河上将尊,渡邊康玄:河岸浸食に及ぼす交互砂州の影響に関する水理実験,土木学会論文集 A2(応用力学), Vol. 72, No. 2 (応用力学論文集 Vol. 19), I_593-I_600, 2016.
- 8) 桑村貴志, 渡邊康玄: 砂州形態が変化する水理条件下の砂州の挙動, 北海道開発土木研究所 月報, No.602, 2003.

直立壁前面における捨石堤の

不規則波による変形特性に関する水理模型実験*

五洋建設株式会社 高橋 研也

東北大学大学院工学研究科 田中 仁

1. はじめに

海岸施設・構造物施工時において,作用波浪が低減された所望の作業空間を確保するととも に、当該作業空間に供する重機等の足場を海上に確保したい場合がある。一般的には、等脚台 形マウンド(捨石堤)を築造することが多いが,法面を有するために重機足場が当該作業空間 から離れた位置となり作業半径が大きくなってしまう。例えば、外洋に面した海上工事を計画 する際には、施工ヤードの被災リスクの低減および施工性の向上をおこなうことが課題として 挙げられることがほとんどである。

このような背景に鑑み,著者ら¹は写真-1および図-1に示すバットレス型消波構造物を開発 している。すなわち,L型壁構造であるバットレスを築堤内に埋設し,石材の重量および摩擦 力により滑動・転倒に対して安定させた土留め構造とすることで,築堤側面が鉛直に切り立ち 重機足場を作業空間に近接した位置に築造することができるものである。なお,バットレス底 版は揚圧力低減および石材との噛み合わせ効果促進のために隙間を設けた梁構造としている。 また,バットレスは防波壁としても機能するとともに,消波ブロックによって築堤の消波性能 の増強および石材の吸出しリスクの低減が図られている。このバットレス型消波構造物の設計 に資するため,著者ら¹は既に水理模型実験を実施して設計波圧分布や水平波力の低減率,越 波流量などの基本的な水理性能を確認している。しかし,破壊モードに関しては被災形態の目 視確認を定性的におこなったにすぎず,破壊の進行とともに水理性能がどのように変化してい くかについても触れられていない。これは維持管理計画を作成する上で有用な情報となり得る。

そこで、本研究においては、このバットレス型消波構造物の不規則波による変形に着目した 水理模型実験を実施して、破壊モードおよび水理性能の変化傾向を把握することを目的とする。

*Hydraulic model experiment on deformation characteristics due to irregular waves of rubble mound breakwater at the front of upright seawall by Kenya Takahashi and Hitoshi Tanaka

2. 実験方法

図-2 に実験断面図を示す。一般的な急勾配海岸を想定して 2 次元造波水路内に沖側で 1/50, 岸側で 1/10 の海底勾配模型を設置し,造波水深を 78 cm とした。表-1 に実験条件を示す。沖波 波形勾配 $H_0'/L_0 = 0.021 \sim 0.041$ の範囲で,換算沖波波高 $H_0' = 6.9 \sim 17.7$ cm および沖波周期 $T_0 =$ 1.43 ~ 1.66 s の 5 ケースを設定した。各ケースで不規則波群I ~ III と 3 組用意し,造波信号の乱 数値を各組毎に固定して波高レベルを変えても同じ波形となるようにした。ケース 3,5 におい ては消波ブロックの効果を確認するため,消波ブロック模型を設置しない状態でも実験した。

まず,海底勾配模型のみの状態で造波をおこない,後述の検討で使用する進行波諸元を計測 した。サンプリング周波数 20 Hz にて水位を計測し,波高計 w2 および w3 における計測水位か ら合田ほか²⁾による入・反射波分離をおこなって通過波検定を実施した。

次に、図-1 に示すバットレス型消波構造物模型を波高計 w9 の位置に設置して造波をおこなった。バットレス模型はアクリル製,捨石模型は4号砕石(単粒度砕石 30-20 mm)とし,消波 ブロックは平均質量 320.9 gのモルタル製シェークブロック模型とした。図-3 にバットレス模 型正面図を圧力計の配置とともに示す。バットレス模型海側壁面の水路中央付近高さ方向に, 圧力計を静水面下に1個,砕石層内(完全被覆部)に3 個および突出部(不完全被覆部)に2 個の合計6個を設置した。圧力はサンプリング周波数 200 Hz にて計測した。さらに,構造物背 後の空間を越波升に見立て越波量を計測した。写真-2 にケース3 における実験状況を示す。

図-2 実験断面図(縦横比=2:1,単位:mm)

	1	X-1 7			
ケース	H_0'	T_0	$H_{0}'\!/L_{0}$	造波	消波
	(cm)	(8)		仮剱	7 499
1	6.9	1.43	0.021	900	有
2	9.8	1.45	0.030	900	有
3	12.2	1.51	0.034	1800	有, 無
4	13.7	1.58	0.035	1800	有
5	17.7	1.66	0.041	1800	有. 無

表-1 実験条件

写真-2 実験状況(ケース3,波群I)

図-3 バットレス模型正面図および圧力計配置図(単位:mm)

加えて、Hudson 式による消波ブロックの所要質量を満足しないケース 3~5 においては、バットレス型消波構造物の破壊モードをより詳細に把握するために、波群I、II、III、II、II、IIを順に 300 波ずつ繰り返して合計 1800 波作用させた。各波群造波終了後の 300 波毎に計測データの収録および水路側壁ガラス面からの画像解析による堤体形状の記録をおこなった。

図-4 捨石および消波ブロックの断面変化(N:作用させた波の数)

3. 実験結果

(1) 破壊モード

図-4 に全ケースにおける捨石および消波ブロックの 300 波毎の断面変化を, 写真-3 にケース 5 (消波ブロック有) における 1800 波作用後の被災状況を示す。ここに, N は作用させた波の 数であり, 横軸は造波前のバットレス模型海側壁面を原点としている。なお, Hudson 式による 消波ブロックの所要質量を満足するケース 1, 2 (消波ブロック有) においてはほとんど断面変 化が生じていなかったため, 造波を 900 波までで中止している。また, ケース 3 (消波ブロッ ク有)における 1500~1800 波間のデータに関しては有効なデータと認められなかったために欠 測扱いとしている。今回の実験条件の範囲内においてはバットレス模型にほとんど変位が生じ なかったため, ここでは捨石および消波ブロックにより構成される築堤部の変形特性にのみ着 目する。

図-4 を見ると, Hudson 式による消波ブロックの所要質量を満足するケース 1,2 (消波ブロッ ク有)のみならず,満足しないケース 3,4 (消波ブロック有)においてもほとんど断面変化が 生じなかったことが分かる。消波ブロックがある場合において顕著な断面変化が生じたのはケ ース 5 (消波ブロック有)のみであり,静水面付近に位置する法肩が侵食されて消波ブロック と捨石が沖側に崩れる,いわゆる S 字型断面に変形する破壊モードとなった。消波ブロックが ない場合における破壊モードもある場合とほぼ同様であり,ケース 3,5 ともに破壊が進行した が,特に図-4(g)に示すケース 5 (消波ブロック無)において,岸側へ打ち上げられた捨石がバ ットレス模型突出部に捕捉されて被災の進行が抑えられている様子が確認された。

(2) 変形レベルの変化

図-4 において顕著な断面変化が認められたケース 3,5(消波ブロック有,無)の変形レベル を算出し,作用波数による変化を確認した。変形レベルの算出には Van der Meer³⁾による式(1), (2)を用い,捨石および消波ブロックそれぞれに対しての値を算出した。

$$S = A / D_{n50}^{2} \tag{1}$$

$$D_{n50} = \left(M_{50} / \rho_r\right)^{1/3} \tag{2}$$

図-5 捨石および消波ブロックの変形レベルの作用波数による変化
ここに、*D*_{n50}は捨石の 50%質量に相当する粒径または消波ブロックの代表径、*M*₅₀は捨石また は消波ブロックの 50%質量、*p*_rは捨石または消波ブロックの密度、*S*は変形レベル、*A*は侵食 部の面積である。図-5 に捨石および消波ブロックの変形レベルの作用波数による変化を示す。 ケース 3 (消波ブロック有)においては波浪条件が低いために作用波数が増加しても変形レベ ルがほとんど変化していないが、ケース 5 (消波ブロック有)においては捨石および消波ブロ ックとも造波直後に大きく変形し、作用波数の増加とともに変形レベルが一定値に漸近してい く傾向が読み取れる。一方、消波ブロックがない場合においては 1800 波作用後も捨石の変形レ ベルが上昇傾向であり、上述の通りバットレス模型にほとんど変位が生じなかったとは言え、 築堤部の維持管理に配慮すれば、消波ブロックにより捨石を被覆する必要性は高いと言える。 なお、捨石と消波ブロックの変形レベルの値が異なるのは、波浪の作用による締固まりや噛み 合わせ、消波ブロックの捨石への食い込みなどによりそれぞれの変形過程が異なることに起因 するものと考えられ、変形レベルの値の評価に当たっては注意が必要である。

(3) 反射率および越波流量の変化

バットレス型消波構造物の消波性能の指標を反射率および越波流量と考え⁴⁾,図-5の変形レベルと同様に作用波数による変化をそれぞれ確認した。反射率 K_rは通過波検定と同様に波高計 w2 および w3 における計測水位から合田ほか²⁾による入・反射波分離をおこなって算出した。 越波流量は実験計測値 q を換算沖波波高 H₀'および重力加速度 g により無次元化して整理した。

図-6 にバットレス型消波構造物からの反射率の作用波数による変化を示す。変形レベルが小 さかったケース 3 (消波ブロック有)においては作用波数が増加しても反射率に大きな変化は 見られないが,それ以外の変形レベルが大きかったケースにおいては作用波数の増加とともに 反射率が減少している。これは,捨石および消波ブロックの被災が進行して構造物法面が徐々 に緩勾配化していることと,それに伴い越波流量が増大していることなどによると考えられる。

図-7 にバットレス型消波構造物からの無次元越波流量の作用波数による変化を示す。波群特性の異なる不規則波群I,II,IIIを順に300波ずつ繰り返して造波しているために変形レベルおよび反射率と比較してバラツキが大きいが,作用波数の増加とともに無次元越波流量が増加傾向であることが読み取れる。バットレス自体にほとんど変位が生じていなくても,築堤部の変形レベルが大きくなった場合には消波性能が低下する可能性があることに注意する必要がある。

図-6 バットレス型消波構造物からの 反射率の作用波数による変化

図-7 バットレス型消波構造物からの 無次元越波流量の作用波数による変化

(4) 水平波力の変化

最後に、バットレス模型海側壁面における水平波力の作用波数による変化を確認した。水平 波力は図-3 に示す圧力計 p5~p10 における圧力計測値を台形公式により積分して最大同時波圧 合力として算出した。図-8 に結果を示す。消波ブロックがある場合においては作用波数の増加 とともに水平波力も上昇しているが、消波ブロックがない場合においては逆に減少に転じてい る。これは、図-4(g)および写真-4 に示すように岸側へ打ち上げられた捨石がバットレス模型突 出部に捕捉されたことにより、砕波して捨石部に突っ込んで来た水塊が突出部に直接作用して 衝撃砕波圧を生じるのを防いだ結果であると考えられる。

図-8 バットレス模型海側壁面における 最大同時波圧合力の作用波数による変化

写真-4 ケース5(消波ブロック無)

4. おわりに

本研究においては,海岸工事を想定した新しいバットレス型消波構造物を提案し,水理模型 実験を実施して破壊モードや消波性能などの基本的な水理性能を確認した。今後は本研究で得 られた基礎資料から合理的な設計手法に体系化し,現場施工への適用を図っていく所存である。

謝辞

本研究において使用したモルタル製シェークブロック模型は本間コンクリート工業株式会 社の池田雅俊氏から貸与いただきました。ここに記して謝意を表します。

参考文献

- 塩畑英俊,宇山友理,高橋研也,西畑 剛,山下 徹,三好俊康,林 規夫,大久保泰宏: バットレス型消波構造物の開発,土木学会論文集 B3(海洋開発), Vol.74, No.2, pp.I_49-I_54, 2018.
- 合田良実,鈴木康正,岸良安治,菊地治:不規則波実験における入・反射波の分離推定法,港湾技研資料,No.248, 24p, 1976.
- J. W. Van der Meer: Stability of breakwater armor layers Design formulae, Coastal Engineering, 11, pp. 219-239, 1987.
- 4) 太田隆夫,松見吉晴,吉木弘軌,平山隆幸,大野賢一:傾斜護岸の複合被災に伴う消波性 能変化の予測モデル,土木学会論文集 B2 (海岸工学), Vol.69, No.2, pp.I_761-I_765, 2013.

三沢海岸の長期的な汀線変化の特徴*

八戸工業大学 久保田 桃加、葛西 美琴、佐々木 幹夫

1. はじめに

三沢海岸の三沢漁港の建設以来,防波堤により北向きの沿岸漂砂が阻止された。その結果,漁 港の南側には著しい砂の堆積が発生し,北側では海岸侵食が急速に進行した。三沢海岸では,ヘ ッドランド工法は海岸の侵食を防止し,砂浜を残すための対策として用いられている。ヘッド ランドは三沢海岸に合計 13 基あり,南側から B1HL,B2HL,B3HL および B13HL と呼ばれてい る。本研究は,平均汀線(汀線の空間平均)を用いて砂浜の安定化と復元を調査し,三沢海岸の 長期的な汀線変化を明らかにすることを目的としている。

2. 三沢海岸における侵食対策と海岸の現状

三沢海岸では,三沢漁港の北側において海岸侵食対策工としてヘッドランド工の建設を進めている。平成29年12月時点で,図1に示すように計画通りに堤長200m,設置間隔1kmで設置されており,B12HLは平成29年に施工が実施され,平成30年3月にすべて完了した。現在はB13HLの北側1km地点に100mの保護工が施工され,平成32年に完了する予定である。

図1 三沢海岸ヘッドランド工設置

3. 三沢海岸のヘッドランドエ

写真1は三沢漁港の南北海岸を示している。写真1に示すように,南側は広く,北側では多く

* Characteristics of Long Term Shoreline Change on Misawa Coast by Momoka Kubota, Mikoto Kasai and Mikio Sasaki

の砂浜が減少している。

写真1:三沢漁港の南北海岸(2017年6月30日撮影)

写真2では,B13HLの北側1km地点に100mの保護工が施工され,B13HLより3km北側に高瀬川 放水路導流提がある。

写真 2: B13HL から北海岸(2017 年 6 月 30 日撮影)

4. 平均汀線の定義

図2は,HL間の海岸から海岸までの距離をy座標,海岸沿いの距離をx座標, x_1 は座標点からの距離を意味し、 x_2 は海岸の終点のx座標の値である。 y_s は汀線位置, y_{sm} は平均汀線である。式(1)は平均汀線 y_{sm} の公式となっている。

5. 平均汀線

図3は,2000年1月~2018年4月までのB1HLの南北海岸の平均汀線を示している。HL間の 海岸に従って平均をとる。縦軸に平均汀線をとり,横軸に時間(年月)をとっている。ひし形の 線は南側海岸の平均汀線を意味し,四角の線は北側海岸の平均汀線を意味する。点線はB1HLが 200m 延伸したことを意味し,丸点線はB2HLが200m 延伸したことを意味する。観測はB1HLか らB13HL区間約14㎞を汀線に沿って歩き測定している。B1HL南側海岸では,2000年1月~ 2002年1月にかけて前進傾向が見られる。2002年1月~2003年1月かけてほぼ同位置にあ り,2003年1月~2006年1月にかけて前進傾向が見られる。2006年1月~2008年1月にかけて 後退傾向が見られる。2008年1月~2015年1月にかけて前進と後退を繰り返しているが,ほぼ 同位置にある。2015年1月付近では前進が見られる。2015年1月~2018年4月にかけて前進 と後退を繰り返しているが,徐々に後退傾向が見られる。2000年と比べると前進している。B1HL 北側海岸では,2000年1月~2002年1月にかけて前進傾向が見られる。2002年1月~2015年1 月にかけて前進と後退を繰り返しているが,ほぼ同位置にある。2015年1月付近では前進傾向 が見られ,2015年1月~2018年4月にかけて徐々に後退傾向が見られる。2000年と比べると前 進している。

図4は,2000年1月~2018年4月までのB7HLの南北海岸の平均汀線を示している。点線は B6HLが200m延伸したことを意味し,丸点線はB7HLが200m延伸,直線はB8HLが200m延伸 したことを意味する。B7HL南側海岸では,2000年1月~2002年1月にかけて前進傾向が見ら れる。2002年1月~2003年1月にかけてほぼ同位置にあり,2003年1月~2005年1月にかけて 前進傾向となっている。2005年1月~2009年1月にかけて前進と後退を繰り返している。2009 年1月~2011年1月にかけて前進傾向が見られる。2011年1月~2012年1月にかけて前進と 後退を繰り返しており,2012年1月付近は前進が見られる。2012年1月~2013年1月にかけて 後退傾向が見られる。2013年1月~2015年1月にかけて前進と後退を繰り返しており,2015年 1月~2018年4月にかけて徐々に後退が見られる。2000年と比べると後退している。B7HL北 (側海岸では,2000年1月~2003年1月にかけて前進傾向が見られる。2003年1月~2009年1月 にかけて前進と後退を繰り返しているがほぼ同位置にある。2009年1月~2011年1月にかけ て前進しており,2001年1月~2012年1月にかけて後退傾向が見られる。2012年1月付近では 前進しており,2012年1月~2015年1月は前進と後退を繰り返している。2015年1月~2018年 4月にかけて徐々に後退傾向が見られる。2000年と比べると後退している。

図3 B1HLの南北海岸の平均汀線

図 5 は,2000 年 1 月~2018 年 4 月までの B9HL の南北海岸の平均汀線を示している。 点線は

B9HL が 200m 延伸したことを意味し,丸点線は B10HL が 200m 延伸,直線は B11HL が 200m 延 伸してことを意味する。B9HL 南側海岸では,2000 年 1 月~2002 年 1 月にかけて前進傾向が見 られる。2002 年 1 月~2005 年 1 月にかけて前進と後退を繰り返しており,ほぼ同位置にある。 2005 年 1 月~2011 年 1 月にかけて前進と後退を繰り返しており,2011 年 1 月~2015 年 1 月にか けて後退傾向が見られる。2015 年 1 月付近では前進が見られ,2015 年 1 月~2018 年 4 月にかけ て徐々に後退傾向が見られる。2000 年と比べると前進している。B9HL 北側海岸では,2000 年 1 月~2003 年 1 月にかけて前進傾向が見られる。2003 年 1 月~2015 年 1 月にかけて前進と後退 を繰り返しているがほぼ同位置にある。2015 年 1 月~2018 年 4 月にかけて前進と後退 返しており,徐々に前進傾向が見られる。2000 年と比べると後退している。

図5 B9HLの南北海岸の平均汀線

図 6 は,2002 年 7 月~2018 年 4 月までの B13HL の南北海岸の平均汀線を示している。丸点線 は B12HL が 200m 延伸したことを意味し,点線は B13HL が 200m 延伸したことを意味する。 B13HL 南側海岸では,2002 年 7 月~2004 年 1 月にかけて前進傾向が見られ,2004 年 1 月~2006 年 1 月にかけて徐々に後退傾向が見られる。2006 年 1 月~2009 年 1 月にかけてほぼ同位置に あり,2009 年 1 月付近では前進が見られる。2009 年 1 月~2011 年 1 月にかけて徐々に後退傾向 が見られる。2011 年 1 月~2015 年にかけて前進と後退を繰り返しているがほぼ同位置にある。 2015 年 1 月~2018 年 4 月にかけて前進傾向が見られる。2002 年と比べると後退しているが,安 定している。B13HL 北側海岸では,2002 年 7 月~2003 年 1 月にかけて前進傾向が見られ,2003 年 1 月~2009 年 1 月にかけて後退傾向が見られる。2009 年 1 月付近では前進が見られ,2009 年 1 月~2012 年 1 月にかけて後退傾向が見られる。2012 年 1 月~2015 年 1 月にかけて前進後退 を繰り返しており,2015 年1月付近では前進が見られる。2015 年1月~2016 年1月にかけて後 退傾向が見られ,2016 年1月~2017 年1月にかけてほぼ同位置にある。2017 年1月~2018 年4 月にかけて前進傾向が見られる。2002 年と比べると後退している。

図 6 B13HL の南北海岸の平均汀線

6. 結論

本研究では,以下のことを明らかとなった。(1)B1HL 南側海岸は,ヘッドランド付近のみの観 測をしているので,平均すると他の海岸の北側より前進している。(2)汀線と平均することによ って,空間的な変化は消え,汀線全体が前進しているのか後退しているのかを明確に示してい る。(3)平均汀線は前進・後退の周期が,春~夏に前進し,秋~冬に後退する1年周期となってい る。(4)汀線変動は1年周期であるが,天候が悪化し,時化が続いたとき時の汀線後退や,穏やかな 天候が続いた時の大きな汀線前進が見られる。(5)平均汀線の長期的な地形変動を調べると,過 去に海岸侵食は起きていたが,三沢海岸で侵食が止まり,ヘッドランド工の建設のため平均汀線 が陸側から海側へ徐々に進んでいることが明らかになった。(6)長期の地形的特徴の変化を調 べるには,平均汀線を用いた研究が有効な方法であり,他の海岸にも非常に有用である。

謝辞

この調査は青森県上北地域県民局(局長 櫻庭 憲司)からの委託研究により実施したものである。ここに深甚なる敬意を表する。

参考文献

(1) 島下大,佐々木幹夫:三沢海岸 2017 年度地形変動特性,東北地域災害科学研究 vol.54,2017,pp.119-124.

三沢海岸 2018 年地形変動特性*

八戸工業大学工学部土木建築工学科 葛西 美琴・久保田 桃加・佐々木 幹夫

1. はじめに

三沢海岸では、三沢漁港防波堤の建設以来、その北側海岸において侵食が急激に進んでいた。三沢海岸の侵食を防ぎ砂浜を残すための対策としてヘッドランド工法が用いられている。三沢海岸には 合計 13 個のヘッドランドが建設されている。ヘッドランドは南から北へ順に B1HL,B2HL,~B13HL と名付けられている。ヘッドランド工周辺の海岸地

形を定期的に調査することで、地形変動の傾向を把握でき、海岸の地形変動の特性を明らかにすることができる。また同時に、ヘッドランド工法の効果を確認することが可能となる。本研究では、2018 年4月から1月までの汀線位置を調べることにより地形の変動特性を明らかにしてみる。

2. 現地観測

観測は,GPS,小型パソコンを一枚の板に固定して,B1HL~B13HL 区間(14km)を汀線に沿って 歩き汀線位置を月に1度の割合で測定した。汀線位置の測定は波が高い時は真の汀線位置より陸側 に一定距離後退したところに仮の汀線を設けこの仮汀線に沿って移動し測定している。写真1は測 定時状況を,写真2は使用した GPS と小型パソコンを示している。写真1に示した4月24日は陸側 に15m後退したところを測定し,作業終了後に真の汀線位置に補正している。気象条件により観測 実施日は左右されたがおおむね月1回の観測は実施できた。表1は今年度の観測日時と波の状況,汀 線測定位置を示したものである。

写真1 汀線測定風景

写真2 GPSと小型パソコン

*Characteristics of shoreline in Misawa coast in 2018 by Mikoto Kasai, Momoka Kubota and Mikio Sasaki

回数	対象月	実施日	波高	波向き	汀線測定位置
1	4月	2018年5月15日	0.6m	Е	後退 20m
2	5月	2018年6月5日	0.8m	ESE	後退 20m
3	6月	2018年6月25日	1m	Е	後退15m
4	7月	2018年7月17日	1.5m	Е	後退 20m
5	8月	2018年8月2日	1.2m	Е	後退 20m
6	9月	2018年9月13日	1.5m	Е	後退 20m
7	10月	2018年10月10日	1.5m	Е	後退 50m
8	11月	2018年11月12日	1.5m	Е	後退 35m
9	12月	2018年12月5日	1m	ENE	後退 30m

表1 汀線観測日

3. 測定誤差

汀線位置はサージングブレーカー(砕け寄せ波砕波)の砕波点を基準にしている。これは汀線付近の地形は汀線を境にそれより陸側は緩く,海側は急勾配となっており,波が穏やかな時は汀線上で砕波することから決めていることである。満潮や干潮により波の打ち上げは大幅に変化するが砕波点は大きくは変化しない。砕波点を基準にした場合,通常の海底地形上では満潮時で 3m ほど砕波点が陸側に移動している。本研究では,汀線位置に 5m 以内の差であれば,ほぼ同位置にあるとしており,潮汐による汀線位置の補正はしていない。

図1 砕波点と汀線位置

4. 地形変動特性

図 2 は 2018 年における 5 月 15 日から 12 月 5 日までの B1HL~B2HL までの各月の汀線位置を示 している。太い実線が 5 月 15 日の汀線,丸点線が 6 月 5 日の汀線,角点線が 6 月 25 日の汀線,破線が 7 月 17 日の汀線,一点鎖線が 8 月 2 日の汀線,長破線が 9 月 13 日の汀線,長鎖線が 10 月 10 日の汀線,二 点鎖線が11月12日の汀線,細い実線が12月5日の汀線を示している。B1HL~B2HL間で最も前進したのは7月17日の汀線で最も後退しているのは5月15日の汀線となっていることがわかる。B1HL 南側では10月10日の汀線が最も前進し,6月25日の汀線が最も後退している。その他の月の汀線はこれら二つの汀線の間を移動している。

図3はB1HL~B2HL間の海岸で最も前進した月の汀線と,最も後退した月の汀線を2000年の汀線 と比較している。図において,2000年の汀線を細い点線で示している。図より,B1HL~B2HL間の海 岸で最も後退した5月15日の汀線を2000年の汀線と比較すると,B1HL北側600m~800m地点で最大 10m程の後退が見られるが,それ以外の海岸では前進しており,最大60mの前進が見られる。B1HL 南側の海岸でも最も後退した6月25日の汀線でも2000年よりも前進しており,最大35mの前進が見 られる。B1HLは最初に建設されたヘッドランド工であった。この箇所の海岸侵食が対策開始当時 最も深刻で対策が急がれていた。海岸の侵食は激しく進んでいたが,この海岸侵食もヘッドランド 工の設置により止まり,砂浜は年々復元してきている。汀線形状は円弧状を示しており,海浜の安定 化が進んでいることを示している。

図 4 は 2018 年における 5 月 15 日から 12 月 5 日までの B4HL~B6HL までの各月の汀線位置を示 している。最も前進した汀線は B4HL~B5HL 間の海岸で 10 月 10 日の汀線,B5HL~B6HL 間の海岸で 7 月 17 日の汀線となった。最も後退しているのは B4HL~B6HL 間の海岸で 6 月 25 日の汀線となっ

図 2 B1HL~B2HL 各月の汀線位置

図 3 B1HL~B2HL 汀線位置比較

117

た。その他の月の汀線はこれら二つの汀線の間を移動している。

図 5 は B4HL~B6HL 間の海岸で最も前進した月の汀線と,最も後退した月の汀線を 2000 年の汀線 と比較している。図より,B4HL~B5HL 間の海岸では最も後退している 6 月 25 日の汀線と 2000 年の 汀線を比較すると全体的に後退しており,最大 30m の後退が見られる。最も前進した 10 月 10 日の 汀線では,B4HL~1050m 地点までは 15m 程の前進と後退を繰り返しており,1050m~B5HL 間の海岸で は最大 50m の前進が見られる。B5HL~B6HL 間の海岸では,最も後退した月の汀線でも最大 30m の 前進が見られる。この区間でも汀線形状は綺麗な円弧状となっている。

図 6 は 2018 年における 5 月 15 日から 12 月 5 日までの B10HL~B12HL までの各月の汀線位置を 示している。B10HL~B12HL 間の海岸で最も前進したのは 10 月 10 日の汀線,最も後退したのは 6 月 25 日であることがわかる。その他の月の汀線はこれら二つの汀線の間を移動している。

図7はB10HL~B12HL間の海岸で最も前進した月の汀線と,最も後退した月の汀線を2000年の汀線と比較している。図より,B10HL~B11HL間の海岸で最も後退した6月25日の汀線を2000年の汀線と比較すると,全体的に後退しており,最大20mの後退が見られる。最も前進した10月10日の汀線では全体的に前進しており,最大50mの前進が見られる。B11HL~B12HL間の海岸では最も後退した汀線では全体的に後退しており,最大25mの後退が見られる。最も前進した汀線では全体的に前進しており,最大25mの後退が見られる。最も前進した汀線では全体的に前進しており,最大70m程の前進が見られる。この区間では最も前進した月の汀線は2000年と比較して大きな前進が見られ、また汀線形状も綺麗な円弧状を示しており,砂浜が安定してきていることがわかる。これらのグラフから夏に後退し秋に前進する傾向があることがわかる。

図 4 B4HL~B6HL 各月の汀線位置

図 5 B4HL~B6HL 汀線位置比較

図 8 は 2003 年 4 月汀線を基準にした場合の,2017 年汀線(島下,佐々木(2018)⁽¹⁾)の前進量を示したものである。図において,正の値は 2003 年の汀線からの前進距離を示し、負の値は 2003 年の汀線からの後退距離を示している。図から,2017 年の汀線が B1HL と B6HL の間、および B8HL と B13HL の間の海岸で前進していることがわかる。汀線は後退と前進を繰り返しながら動いている。B6HL と B8HL の間の海岸と,B13HL 北側の海岸では後退が見られる。B1HL と B2HL の間の海岸では,7 月 26日の汀線が最も前進し、最大 65 m の前進が見られる。最も後退したのは 10 月 4 日の汀線となった。

図 6 B10HL~B12HL 各月の汀線位置

図 7 B10HL~B12HL 汀線位置比較

図 8 2017 年汀線前進量

汀線は夏に前進し秋に後退していることがわかる。B13HL 北海岸で、2017 年の海岸線は後退して おり、最大 35m の後退が見られる。図に示されているように、汀線はヘッドランド周辺で大きく 前進している。海岸線の形状は、円弧状となっている。

図示は省略したがB2HL~B4HL,B6HL~B10HL,B12HL~B13HL間の海岸では,以下のようになってい る。B2HL~B3HL 間の海岸では最も前進した汀線は 2000 年と比較すると全体が前進している。 B3HL~B4HL では B3HL~500m 地点に消波ブロックが設置されており,測定不可能であった。 B6~B10HL 間の海岸では B6HL 北側 800m 付近で多少の後退が見られるがそのほかの海岸では最も 前進した月の汀線は 2000 年の汀線よりも前進していた。B12HL~B13HL 間の海岸でも 2000 年より も前進傾向が見られた。B13HL 北側では最も前進した月の汀線でも後退が見られるが,ヘッドラン ド付近では 2000 年の汀線よりも前進が見られた。これらの海岸でも汀線形状は円弧状となってお り、砂浜が安定してきていることがわかる。

5. 結論

2018年の三沢海岸の地形変動特性の特徴は以下のようになった。

(1)B2HL~B3HL 間の海岸では最も前進した汀線は 2000 年と比較すると全体が前進している。 B3HL~B4HL では B3HL~500m 地点に消波ブロックが設置されており,測定不可能であった。 (2)B6~B10HL 間の海岸では B6HL 北側 800m 付近で多少の後退が見られるがそのほかの海岸では最 も前進した月の汀線は 2000 年の汀線よりも前進していた。

(3)B12HL~B13HL 間の海岸でも 2000 年よりも前進傾向が見られた。B13HL 北側では最も前進した 月の汀線でも後退が見られるが,ヘッドランド付近では 2000 年の汀線よりも前進が見られた。掲載 しなかったこれらの海岸でも汀線形状は円弧状となっており、砂浜が安定してきていることがわか る。

(4)過去の汀線位置では夏に前進し,冬に後退する傾向があったが,2018 年の汀線位置は 10 月に最前進,6月に最後退となる。

(5)過去の汀線との比較により,B13HL 北側以外で前進が見られほとんどの砂浜に回復が見られる。 (6)汀線形状は円弧状を示しており,地形変動の安定化が進んでいる。

(7)ヘッドランド設置海岸で,砂浜の安定化が進み,三沢海岸の侵食防止,砂浜回復,保全には,ヘッドランド工が有効であることが昨年度の研究に引き続き明らかになった。

6. 謝辞

この調査は青森県上北地域県民局(局長 櫻庭 憲司)からの委託研究により実施したものである。ここに深甚なる敬意を表する。

参考文献

(1)島下大、佐々木幹夫:三沢海岸 2017 年度地形変動特性、東北地域災害科学研究 vol.54,2017,pp.119-124.

十三湖における塩水の遡上特性*

八戸工業大学工学部土木建築工学科 赤坂 光・佐々木 幹夫 鉄建建設㈱ 功刀 智

1.はじめに

本研究は、青森県にある十三湖を調査対象としている(図 1)。十三湖は一級水系岩木川 の河口に位置している汽水湖である。岩木川は津軽平野を北流した後、十三湖へ流れ込み湖 口から日本海へ流れでている。日本海と十三湖を結ぶ湖口河道を現地では水戸口と呼んでい る(図 2)。十三湖はヤマトシジミの日本での一大生産地の一つである。2011年にはシジミ漁 獲量が日本で一位となっている。十三湖でも同様にシジミは何らかの影響を受けて年漁獲量 が安定していない。その原因はまだ特定できていないが、水温上昇や塩分環境の変化も一因 ではないかと考えられている。塩水はシジミの成長に大きく関わっている。十三湖には岩木 川といくつかの小河川が流入しており、流入河川水の影響で塩分濃度が変化している。その ため、塩水と淡水の進入によって塩分環境がどのように変化するかを調査することは重要と なっている。

本研究では佐々木・田中・梅田(2013)⁽¹⁾の調査結果をアップロードし、2013 年から 2017 年 までの5年間の塩水遡上量を調べることとする。また、Sasaki, Tanaka and Umeda (2017)⁽²⁾の 理論を用いて、湖口における遡上塩水塊の鉛直分布を明らかにしてみる。

十三湖に進入する淡水量と海から湖に進入する海水の量を連続の式を用いて計算する。淡水流入量について岩木川の他に十三湖と繋がるいくつかの河川があるが、それらの十三湖に流入する河川水量は極めて少量となっている。そのため湖への流入河川水量として岩木川からの流量だけを使用することとする。計算により求まった海水量と淡水量より、2013 年~2017年の各月の十三湖に流入する塩分を調べる。さらに湖における連続の式より水戸口河道の流速を求め、算出した流速より塩分の鉛直分布を求め、湖における塩水塊の鉛直構造を検討する。

*Characteristics of salt water intrusion in Lake Jusan by Hikaru Akasaka, Mikio Sasaki and Satoru Kunugi

2.海水遡上量の算定方法

+三湖には岩木川からの淡水が流れ、水戸口からは海水が流れ込んでいる。この二箇所の 湖口及び河口の水路が湖の水位に大きく関係している。国土交通省青森河川国道事務所より取 り寄せた岩木川流量、十三湖水位のデータを整理し、2013年~2017年の各月ごとの海水の進 入量を計算する。式(1)は十三湖における質量保存方程式を示したもので、湖汐水位η_ℓは岩木 川流量Q₁(流入量)と三戸口は流量Q₂(流出量)により上昇する。十三湖へ流入する岩木川流量 Q₁を基に十三湖水位より水戸口河道内流量Q₂を算出する。水戸口河道内流量Q₂は式(1)によ り表され、式(2)により求めることができる。流量Q₂は式(2)により算出する。Δtの時間は 3600秒として計算し、ηを若宮水位観測所・十三観測所の実測値平均を使用した。流量Q₂が 正の値ならば順流、負の値ならば逆流の塩水遡上となる。式(1)の右辺二項の中央差分を取る と式(2)のようになる。各正時の観測値を用いれば式(2)より水戸口流量Q₂が算出できる。

ここに

 Q1:岩木川流量(m³/s)
 Q2:水戸口河道内流量(m³/s)

 As:十三湖面積(km²)
 ηι:十三湖水位(m)

 t:時間

3.各月ごとの海水遡上量

(1)2015年の海水遡上量

図 3(1)~(12)は 2015 年の月ごとの塩水流入量と淡水流入量の割合を示している。1 月から 2 月までに海水流入量は増加していき、1 月は 20%、2 月は 32%となっている(図 3(1)~(2))。 3 月と4月に侵入する海水は極わずかで3 月は 2%、4 月は 0%となった(図 3(3)~(4))。そし て塩水進入は5月には 20%まで増加した(図 3(5))。6月から8月の塩水進入量は6月は6 0%、7月は 58%、8月は 56%となっている(図 3(6)~(8))。9月と10月の塩水流入量は殆ど 同じで 42%となっている(図 3(9)~(10))。11月には 11%減少して 3%となった(図 3(11))。海 水侵入量は 12月には 3%まで減少した(図 3(12))。

(4)2016年の海水遡上量

紙面の都合上、図示は省略するが、以下の特徴がみられる。

2016年の月ごとの塩水流入量と淡水流入量の割合を示している。1月から2月にかけて海水 流入量は減少していき1月は38%、2月は27%となった。3月と4月は極端に減少し3月は 10%、4月は9%となった。塩水進入量は5月には14%増え23%となっている。6月には2 9%増え、52%となった。7月には59%まで増加した。8月になると31%まで減少した。8月 から11月の塩水侵入量は30%台で8月は31%、9月は29%、10月は29%、11月は29%と なっている。12月は11月から16%減少して13%海水が進入した。

図3 十三湖に流入する塩水と淡水の割合

(2) 海水遡上特性

図 4(1)は 2013 年~2017 年の月別海水流入量を絶対値で表している。2 月を見ると 2014 年 の海水流入量が平均値よりも極端に下回っていることがわかる。2015 年 7 月は平均値より も多く海水が流入していることがわかる。2014 年 8 月と 2013 年 9 月は平均値よりも極端に 海水流入量が少ないことが分かった。これらのことから平均値よりも少ない値の月は例年 にない多量な積雪や降雨があったと考えられる。また、平均値よりも大きい値の月は例年 の月よりも降水量が少ないと考えられる。

図 4(2)は 2013 年~2017 年の月別淡水流入量を絶対値で表している。4 月を見ると 2016 年 の淡水流入量が平均値よりも極端に少ないことがわかる。そして 2014 年 8 月と 2013 年 9 月は平均値よりも極端に淡水流入量が多いことがわかる。この図から 2016 年 4 月は例年よ りも降水量が少なかったと考えられる。また、2014 年 8 月と 2013 年 9 月は例年よりも降水 量が多かったと考えられる。

図 4(1) 2013 年~2017 年の月別海水流入量(×10m⁷/月)

図 4(2) 2013 年~2017 年の月別海水流入量(×10m⁷/月)

4.塩水塊の鉛直塩分分布

(1)2015年の塩分分布

図 5(1)と 5(2)は 2015 年 1 月と 6 月における塩分の鉛直分布を示している。縦軸は十三湖の 深さを表しており、横軸は日を表している。シジミの生育環境に適しているのは、 1.4~12psu,6~12psu,1.4~6psu でシジミが呼吸できる。シジミは 10 日以上呼吸できなければ死ん でしまう。1月は淡水と海水が10日以内に交互に入れ替わりシジミが呼吸でき、シジミの生 育環境に適していることがわかる(図 5(1))。6月は1月に比べると高濃度の海水がほぼ毎日進 入しており、淡水と入れ替わり呼吸の頻度が多いことがわかった(図 5(2))。このことから、1 月、6月ともにシジミが生きていくのに適している環境であることがわかった。図示は省略し たが3月と4月は海水が極わずかしか遡上しておらずシジミが生きていくには困難な環境であ った。6月から8月は海水が毎日遡上しているのに対し、9月から12月は2日~3日間隔で海 水が遡上していることがわかった。

図 5(1) 2015 年 1 月における塩分の鉛直分布 図 5(2) 2015 年 6 月における塩分の鉛直分布 (2)2016 年の塩分分布

図 6(1)と図 6(2)は 2016 年 1 月と 6 月における塩分の鉛直分布を示している。1 月は海水が ほぼ毎日進入し、1 日~2 日間隔で淡水と入れ替わりシジミの生育環境に適していることがわ かる(図 6(1))。6 月は 1 月に比べると海水の濃度が低く、淡水の量が多いことがわかった(図 6(2))。6 月は 20 日以降、海水が進入していないためシジミの生育環境に適していないことが わかる。図示は省略したが 2015 年同様、3 月と 4 月は海水が極わずかしか遡上していなかっ た。12 月は 5 日以上遡上していない期間もあった。

図 6(1) 2016 年1月における塩分の鉛直分布 図 6(2) 2016 年6月における塩分の鉛直分布

(3) 塩分鉛直分布の特徴

2015年と2016年の1月~4月は融雪の関係で海水の進入量はわずかである。5月は1日~2 日間隔で淡水と入れ替わっていることがわかった(図5(1),図6(1))。2015年と2016年の6月を 比べると2015年は高濃度塩分が毎日進入しているのに対して2016年は進入する塩水の量が少 なく淡水の量が多いことがわかった(図5(2),図6(2))。7月から9月は高濃度の海水がほとんど 毎日遡上していることがわかった。10月から12月は2日~3日の間隔で海水が遡上している ことがわかった。

5.本研究で得られた結論

- (1)2015年における十三湖に流入する塩水の比率は3月と4月を除くと20%以上に達する ことがわかった。
- (2)2015年の3月と4月に流入する塩水が極わずかである理由として十三湖に雪解け水が流 れ込み十三湖の水位が上がったために海水が流れ込まないためである。そして春から夏 にかけて塩水の進入量は増大し5月から8月まで増大することがわかった。
- (3) 2015年の塩水の侵入量は6月が60%の割合で最大であった。
- (4)9月になると台風の影響により降水量が多くなり十三湖の水位が上がった。このことか ら海水が進入できず、9月は塩水の進入量が減少することがわかった。
- (5)2015年における塩分分布の1月と6月はほぼ毎日海水が進入し、淡水と湖底付近の高濃 度塩水が10日以内に入れ替わり、シジミが呼吸できていることがわかった。
- (6)2016年における塩分分布の1月は湖底付近の海水が毎日入れ替わりシジミが呼吸できて いることがわかった。6月は20日以降、高濃度塩分が進入していないことがわかった。 しかし、20日以降もシジミが呼吸できているためシジミの生育環境には適していること がわかった。
- (7)2015 年と 2016 年の塩分鉛直分布に共通する点は、1 月~4 月は融雪の関係で遡上する海 水はわずかであり、特に 3 月と 4 月は極わずかであった。7 月~9 月は高濃度塩分が遡上 することがわかった。10 月~12 月は 2 日以上の間隔で海水が遡上している期間が多くみ られた。

参考文献

(1) 佐々木幹夫・田中仁・梅田信:岩木川河口における塩淡水交換特性、東北地域災害科学研究、第49巻、pp.139-144,2013.

(2) Mikio Sasaki, Tanaka H. and Umeda M. "Characteristics of Salt Water Movement in Iwaki River Estuary, Japan" Journal of Earth Science and Engineering, Vol. 7, No.1, pp10-19,2017.

小川原湖塩水遡上特性

ハ戸工業大学工学部土木建築工学科 木村 皇介・佐々木 幹夫、 鉄建建設㈱ 功刀 智

1.はじめに

本研究では青森県の東部に位置する小川原湖を調査対象にしている(図 1)。小川原湖は湖 沼面積 62.12km²、水面の標高は 2014 年平均水位が 0.291m となっている。小川原湖は日本 の湖沼では 11 番目の面積規模を有している(汽水湖のなかでは 5 番目)。青森県では、最大 の湖である。また、流入河川は七戸川や花切川など 6 主要河川で、流出河川は高瀬川とな っている。小川原湖の水質が平成 16 年から平成 26 年にかけて急激に悪化している。水質

悪化の原因として進入塩分量の増加や、塩淡境界 面の上昇が考えられている。しかし、湖への塩水 進入については不明な点が多く、解明が急がれる。 そこで、本研究では、湖口における塩水遡上特性 を明らかにすることを研究の目的としている。今 年度は、湖口部、北部湖岸近くに位置する澪筋に おける遡上塩水塊の挙動を現地観測により検討し てみる。観測は平成 30 年 11 月 7 日から 12 月 10 日までの約1ヵ月間行った。

2.観測方法

観測は自記式の流向流速計(No. 104)(写真 1)、小川原湖漁協より貸与を受けて使用した塩分水温計(No.1060, No.1061)(写真 2)、水温塩分計(No.336, No.337)(写真 3)、水 温塩分計(No.007)(写真 4)を用いて、2018年11月7日から12月10日にかけて行った。

写真1流向流速計(No.104)

写真1に示す流向・流速計を底面から0.8mの高さに設置し測定を行った。底面近くの流動 をとらえるために下層の流動を測定することに重点を置いた設置となっている。写真2は 小河原湖漁協組合の塩分計であり、漁協の厚意によりこの塩分計を借りて測定を行ってい

^{*}Characteristics of saltwater intrusion in Lake Ogawara by Kosuke Kimura, Mikio Sasaki and Satoshi Kunugi

る。写真3は昨年度に新たに本研究室で購入した新しい水温塩分計であり、底面から0.3m と0.6mの高さに設置低層の塩水の動きをとらえるように使用している。

写真2 使用した小川原湖漁協の水温塩分計(No.1060, 1061)

写真3 水温塩分計 (No.336, 337)

写真4 ワイパー付き水温塩分計 (No.007)

写真4はワイパー付きの水温塩分計であり、長期にわたると計測器にフジツボ等の貝類が 付着し測定が困難になるためにワイパーを付けている塩分計である。

図2に観測地点を示す(図2▲印)観測場所には澪筋が通っているためこの地点での観測 を行った。写真5に流向流速計と塩分計の設置状況を示す。計器設置は観測地点に船で行 き船上よりロープに固定した流向流速計と塩分計を取り付けたロープに鉄パイプを縛り付 けて固定した(写真5)。

図2 湖口における観測位置(▲)

写真5 計測機器の設置

図 3 は 11/7~12/10 までの観測を行った際の機器の設置位置である。観測開始時の水深は 1.8m だった。流向流速計(No.104)は底面から 0.8m、水温塩分計(No.1060, 1061)はそ れぞれ底面から 1.2m、1.5m、(No.336, 337, 007)は 0.3m、0.6m、0.9mの位置に設置した。

図3 塩分水温計および流向流速計の設置位置

3. 遡上塩水の塩分鉛直分布の検討

湖口より1km下流にある高瀬橋における塩水の混合形態は強混合が多く塩分の鉛直分布は無視できるとした調査研究が多い。しかし、湖口まで進む塩水は 鉛直分布が大きくなり、塩分の分散は無視できない。2016年度に観測した塩分 分布より得られる進入塩水塊の鉛直分布を検討してみる。 湖口における流速は古村・佐々木・功刀(2017)による河口水位と湖水位に より次式のように与えられる。

$$V=0.122\sqrt{2 g \Delta z} \quad \Delta z > 0 \quad (順流) \tag{1}$$
$$V=0.22\sqrt{2 g | \Delta z |} \quad \Delta z < 0 \quad (逆流) \tag{2}$$

ここに、 $\Delta z = Z_{0} - Z_{1}$

Z₀:小川原湖の水位 Z₁:高瀬川河口の水位 式(1)および(2)において、順流は湖から海へ向かう流れ、逆流は海から湖 に向かう流れを意味している。式(1)および(2)により与えられる 2016 年 10 月の流速は図4に示すようになる。

図4 小川原湖湖口における順流と逆流(2016年10月)

図4に示すように逆流はほぼ連日生じている。しかし、湖口に到達する塩水は 限られており逆流の継続時間が長く、大きな速度に達するときだけであり、10 月 18 日から 25 日にかけて塩水が湖口に到達する。図5 に下層の塩分予測を示 した。ここに、塩分の予測は Sasaki, Tanaka and Umeda (2017)が以下のように 示した理論により計算している。すなわち、逆流時には鉛直方向に分割した各層の塩 分濃度 c は水底から水面までの全水層をn分割した時の k 番目の水層内において次式(3)で 与えられる。

$$c_{k} = (C_{\max k} - C_{\min k})\{1 - \exp(-\alpha_{1k}\xi_{k})\} + C_{\min k}$$
(3)

 $c_k = C_{\min k} \quad at \quad \xi_k = 0 \tag{4}$

$$c_k = C_{\max k} \qquad at \quad \xi_k = \infty \tag{5}$$

$$\xi_{k} = \beta_{1k} \int |u_{k}| dt / l_{o} + \beta_{2k} x_{k} / l_{o} + l_{o1k} / l_{o}$$
(6)

式 (6) において、t,および x は時間、および流路に沿う陸から海へ向かって取られた座標、 uk は流速、10は場の代表的な長さであり、ここでは $1_0 = 3600 \text{ m}$ としており、 β_1 およ び β_2 は任意の定数であり、逆流時に $\beta_1 = 1$ 、 $\beta_2 = 3$ 、順流時に $\beta_1 = 1$ 、 $\beta_2 = -3$ 、 L₀₁は逆流開始時の塩水フロントの位置に相当する距離である。

順流時には塩分濃度は次式(5)により与えられる。

$$c_{k} = (C_{pk} - C_{\min k}) \exp\{-\alpha_{2k}(\xi_{k} - \xi_{ok})\} + C_{\min k}$$
(7)

$$c_k = C_{p_k} \quad a \quad \mathbf{a} \quad = \xi_{ok} = \xi_k \Big|_{t=0} \tag{8}$$

ここに、時間 t は順流開始時に 0 となる。また、式(7)において、 C_{pk}は順流開始時の塩分 濃度である。式(3)および(7)より、逆流および順流時の塩分が計算される。

図5 小川原湖口における 2016 年 10 月の塩水遡上

ここに、塩分の計算は次の境界条件を用いている。

α₁=3.2、α₂=1.5、ℓ₀₁=-1200、ℓ₀₂=0、Cm=33.5、C₁=1.3 (10) 古村・佐々木・功刀によると上層(底面から 32 cmの高さ)の理論定数は以下のよ うになる。

 $\alpha_1 = 2.7, \alpha_2 = 1.0, \ell_{01} = -1300, \ell_{02} = 0, Cm = 33.5, C_1 = 1.3$ (11)

図6は式(10)および(11)により与えられる2016年10月の湖口における進入 塩水の塩分分布を示しており、下層と上層の2層より塩分分布を予測した結果 を示しているが鉛直分布はさらに変化した方が自然に見える。そこで、4層の塩 分予測結果より鉛直分布を予測したのが図7である。図7より、塩分の鉛直変 化は4層の場合はより自然に見える。すなわち、ここに入る塩水の鉛直分布は 無視できないことを示している。

図6 湖口に進入する塩水の塩分鉛直分布(2016年10月)(2層の場合)

図7 湖口に進入する塩水の塩分鉛直分布(2016年10月)(4層の場合)

4. 結び

湖口に進入する塩水の塩分鉛直分布は無視できないことを明らかにした。 参考文献

(1) 古村朋也・佐々木幹夫・功刀 智:小川原湖汽水環境調査、東北地域災害科学研究、第 53 巻、 pp.77-82,2017.03.

(2) Mikio Sasaki, Tanaka H. and Umeda M. "Characteristics of Salt Water Movement in Iwaki River Estuary, Japan" Journal of Earth Science and Engineering, Vol. 7, No.1, pp10-19,2017.

鉄骨置屋根構造における地震力の伝達メカニズム

山口優樹(仙台高等専門学校専攻科) 藤田智己(仙台高等専門学校) 飯藤将之(仙台高等専門学校)

1. はじめに

2011年の東北地方太平洋沖地震,2016年の熊本地震等,近年発生した大地震において鉄骨大スパン屋根が RC 柱の上に露出柱脚形式で接合された空間構造物(以降,鉄骨置屋根構造とする)の体育館における RC 下部構造と鉄骨置屋根の接合部(以降,屋根支承部とする)の損傷が確認され,避難所として十分機能できない事例が起きている¹⁾。

著者らは被害建物を対象として立体モデルを作成し静的,動的解析による鉄骨置屋根構造の 被害メカニズムの検討を実施してきており,地震力が屋根面を通じて妻構面に集中する現象と ともに,屋根部のつなぎ梁と下部構造の直交梁の耐力・剛性により地震力の伝わり方が変化し, 屋根支承部の損傷に影響を与える可能性があることを示してきた²⁾。

本論文では鉄骨置屋根構造の3構面の縮小試験体を作成し,各構面を繋ぐつなぎ梁と直交梁 のせん断剛性を模擬した板バネをパラメータとした振動台加振試験とシミュレーション解析を 実施し,つなぎ梁と直交梁のせん断剛性と各構面に分配されるせん断力の関係を確認する。

2. 縮小試験体の振動台加振試験

2.1 試験概要

本研究では、東北地方太平洋沖地震で被害のあった体育館を基に妻構面と中央構面からなる 簡略化した縮小試験体を用いた。図1~図3に縮小試験体の概要を、写真1に試験体全景を示 す。妻構面の固有周期は0.2sec、中央構面の固有周期は0.4secとなっており、質量は各構面同 等で柱頭部が1.6kg、屋根部が1.6kgである。図2に示す柱頭部と屋根部との接合はベアリング を介して連結し、ピン接合としている。各構面は屋根部と柱頭部において、つなぎ梁と直交梁 を模擬した板バネによって接続される。

入力には正弦波と地震波を用いる。正弦波は、中央構面が大きく揺れる1次モード、中央構 面と妻構面が逆位相で揺れる2次モードに合わせて周波数を設定し、振動台の入力加速度は 30galとした。地震波は El-centroNS 波(1940年 Imperial Valley 地震)、八戸 EW 波(1978年 十勝 沖地震)、JMA 神戸 NS 波(1995年 兵庫県南部地震)を用い、振動台の最大入力加速度が 1m/sec² 程度となるように設定した。

試験ケースは表1に示すように、各構面を繋ぐつなぎ梁と直交梁の太さを10mm、15mm、20mm の3種類とし、屋根部につなぎ梁があるケース、屋根部と柱頭部につなぎ梁と直交梁ががある ケースの計12ケースとした。表内には各ケースごとのつなぎ梁と直交梁のせん断剛性と括弧内 に梁幅を示している。つなぎ梁と柱のせん断剛性kは

$$k = \frac{12EI}{H^3} \tag{1}$$

Transmission mechanism of seismic force in steel roofs and RC frames by Yuki Yamaguchi , Tomomi Fujita , Masayuki Hando

で求めている。ここで, I は断面 2 次モーメント, E はヤング係数[195000 N/mm²], H は部材長 さである。

2.2 計測方法

実験データの計測には加速度計,レーザー変位計,ひずみゲージを用いた。屋根部の応答加 速度の計測は、小型加速度計を各構面の屋根面に計3箇所設置して行った。振動台の加速度は、 振動台の南側に設置した加速度計で計測した。振動台と各構面の柱頭部の変位を測定するため、 試験体とは独立してレーザー変位計を振動台の外部に計4箇所設置した。ひずみゲージは各構 面の柱とつなぎ梁の両端とその裏側に計4箇所設置した。各部材に作用するせん断力は、各部 材に設置したひずみゲージで得られたひずみεの値より、

 $Z = bh^3/6 \quad (2) \qquad M = \varepsilon \cdot Z \cdot E \quad (3) \qquad Q = \frac{M}{l} \quad (4)$

で求めた。ここで、Zは断面係数、bは断面の幅、hは断面の厚さ、Eはヤング係数[195000 N/mm²]、 1は上下端に設置したひずみゲージの中心間距離である。

図 3 試験体概略図

写真1 試験体全映

表 1	実験ケース	ごとの各構	iiのつなぎ粱	と直交梁せん断剛性	N/mm	と幅	[mm]	
-----	-------	-------	---------	-----------	------	----	------	--

CASE せん断剛性	1	2	3	4	5	6	7	8	9	10	11	12
屋根部 つなぎ梁	0.57 (20)	0.43 (15)	0.28 (10)	0.57 (20)	0.43 (15)	0.28 (10)	0.57 (20)	0.43 (15)	0.28 (10)	0.57 (20)	0.43 (15)	0.28 (10)
柱頭部 直交梁				0.57×2 (20×2)	0.57×2 (20×2)	0.57×2 (20×2)	0.43×2 (15×2)	0.43×2 (15×2)	0.43×2 (15×2)	0.28×2 (10×2)	0.28×2 (10×2)	0.28×2 (10×2)

※括弧内はつなぎ梁の幅【mm】を示す。

3. 試験結果

3.1 各モードの振動応答

正弦波加振試験によって得られた時刻歴波形の うち, CASE 1の1次モードと2次モード結果を 図4に示す。図中には,東側妻構面,西側妻構面, 中央構面の応答加速度の時刻歴波形を重ね合わせ て示している。

図4に示すように、1次モードでは中央構面が 妻構面に比べ応答が大きく、2次モードでは中央 構面と妻構面が逆位相で振動するモードとなる。1 次モードの振動の場合、妻構面に比べ中央構面で は2.5~3.5程度の応答増幅があった。2次モードで は各構面が交互に振動し、中央構面の応答は1次 モードより小さく、妻構面の2~3倍程度であった。

3.2 つなぎ梁と直交梁のせん断剛性と作用せん 力の関係

正弦波加振試験および地震波加振試験の代表的 な結果として, CASE1, CASE6 における各構面の 作用地震力および、柱と梁に流れるせん断力とそ の割合を図5,6に示す。各構面に作用する地震 力は屋根部および柱頭部の質量と応答加速度の積 として図中に太字で示し, 図中括弧内には中央構 面屋根部の地震力に対する柱と梁に流れるせん断 力の割合として示している。また、中央構面屋根 部に作用した地震力にに対する中央構面柱、つな ぎ梁,直交梁のせん断力の割合を示している。ま た,屋根部のつなぎ梁および中央構面の柱に作用 したせん断力の総和に対するつなぎ梁と柱のせん 断力の割合(以降, せん断力比とする)と屋根面 等価せん断剛性比の関係を図7に示す。ここで, 屋根面等価せん断剛性比は, 妻構面の柱のせん断 剛性とつなぎ梁、直交梁が直列ばねで連結された 時のせん断剛性と中央構面柱のせん断剛性との比 である。正弦波入力時において、CASE1~3のよ うに、つなぎ梁が屋根部のみに設置されるケース では、中央構面の屋根部に作用する地震力に対し て、つなぎ梁のせん断剛性が大きくなるほど、つ

図 4 加速度時刻歷波形: CASE1 屋根部梁 20mm

(b) CASE6 屋根部梁 10 mm 柱頭部 20 mm図 5 各構面に流れるせん断力(正弦波)

(b) CASE6 屋根部梁 10 m社頭部梁 20 m図 6 各構面に流れるせん断力(地震波)

136

なぎ梁に流れるせん断力が大きくなることを確認 した。また、中央構面の柱には、屋根部から流れ る地震力と柱頭部に作用する地震力の和としてせ ん断力が作用し、つなぎ梁のせん断剛性が大きく なるほど中央構面の柱のせん断力が小さくなるこ とを確認した。CASE4~12のように柱頭部に直交 梁が設置されるケースでは、つなぎ梁のせん断力 比は、屋根部のみにつなぎ梁が設置されるケース より小さくなり、さらに、柱頭部の直交梁のせん 断剛性が高くなるほどその傾向は顕著になること を確認した。また、全ケースにおいて、1次モー ドより2次モードの応答時で、つなぎ梁に伝達さ れるせん断力が大きくなり、その分中央構面の柱 に伝達されるせん断力は小さくなることがわかっ た。

地震波入力時では、屋根部のつなぎ梁に作用す るせん断力が最大となる時、中央構面に作用する 地震力に対するつなぎ梁と中央構面の柱に作用す るせん断力の割合が、すべてのケースで正弦波加 振試験における1次モード応答時と傾向が似てい ることが確認できた。

図 7 各部材のせん断力と屋根面等価せん断 剛性比の関係

4. シミュレーション解析

4.1 解析モデル概要

任意形状立体フレームの弾塑性解析ソフト SNAP を用いて,実験のシミュレーション解析を 行う。本試験における多質点系モデルを図8に,モデル概要を表2に示す。

シミュレーション解析では、振動台加振試験では計測できなかった屋根支承部に作用するせん断力に着目し、各構面のつなぎ梁のせん断剛性と屋根支承部に作用するせん断力の関係を確認する。

表2 モデル概要

柱頭部の質量 (kg)	mc1 : 1.84				
	mc2 : 1.76				
屋根面の質量 (kg)	n	nr1 : 1.67			
	mr2 : 1.67				
柱の社(断剛性 (N/mm)	kc1 : 4.78				
	kc2 : 2.39				
	20mm	kR : 0.54			
屋根面のせん断剛性(N/mm)	15mm	kR : 0.41			
	10mm	kR : 0.27			
	20mm	kL: 0.54			
柱頭部のせん断剛性(N/mm)	15mm	kL: 0.41			
	10mm	kL: 0.27			

4.2 解析結果

シミュレーション解析の結果として、図9に解 析結果と試験結果の時刻歴波形の重ね合わせを、 図10に各構面のつなぎ梁と屋根支承部に流れる せん断力,屋根部の水平力とその割合を示す。な お,図中の左側が1次モード,右側に2次モード の結果である。

シミュレーション解析と振動台加振試験の時 刻歴波形は概ね同様の応答をすることが確認でき, さらに図10と図5の比較より、各部材に作用す るせん断力についても概ね対応していることが確 認できた。CASE1 と CASE7 の比較より、柱頭部 に直交梁が設置されたことで中央構面の屋根支承 部に作用するせん断力の割合が低下している。こ れは, 柱頭部に設置した直交梁の影響により中央 構面の下部構造の見かけ上のせん断剛性が高くな り,屋根面に作用した地震力が下部構造に伝達さ れやすくなったためである。また、つなぎ梁と直 交梁のせん断剛性の総和が同じ CASE6 と CASE7 を比較すると,屋根部のつなぎ梁のせん断剛性が 大きく柱頭部の直交梁のせん断剛性が小さい CASE7の方が中央構面の屋根支承部に作用する せん断力の割合が小さくなることが確認された。 以上のことから, 柱頭部に設置された直交梁と柱 のせん断剛性の総和が低く、もしくは屋根部に設 置されたつなぎ梁のせん断剛性が高いほど、中央 構面の支承部に伝達されるせん断力は小さくなり, その一方で、屋根面を通じて妻構面の支承部に伝 達されるせん断力が大きくなることがわかった。

CASE1 の 2 次モード振動時では,中央構面の支 承部のせん断力の割合が負の値を示している。こ れは柱頭部に作用した地震力が屋根部へ伝達され たことを意味し,重層構造として地震力が上から 下へと伝達される現行の設計手法の考え方と異な る現象である。この上部へ流れる力は,中央構面 の屋根部に作用した地震力とともに妻構面へと伝 達されることになる。

上述した解析結果に加え, 妻構面フレームの固

有周期を 0.13sec, 0.1sec, 0.05sec とし, 中央構面 に対しより剛にした場合について正弦波入力の解 析を実施した。最大入力加速度 0.3m/sec² で, 各ケ ースの1次固有周期の正弦波として解析全ケース における各構面の屋根支承部に作用するせん断力 と屋根支承部層の総せん断力の比(以降,支承部 せん断係数とする)と屋根面等価せん断剛性比の 関係を図11に示す。妻構面フレームの固有周期が 短い場合, すなわち屋根面等価せん断剛性比が大 きくなると, 中央構面の支承部せん断係数は減少 し、剛性比が 1.0 以降に 1 次モード振動時でも負 のせん断力が発生する。また,妻構面の固有周期 が短いほど支承部せん断係数は負の値を取りやす い。一方,妻構面の支承部せん断係数は剛性比と ともに増加し、剛性比が 1.0 以降に支承部せん断 係数は 0.5 を超え、屋根部に作用した地震力以上 の力を両端の妻構面の支承部で支持することとな る。

以上の結果より,妻構面の柱のせん断剛性およ び屋根部のつなぎ梁のせん断剛性が高い場合には, 中央構面の柱頭部に作用する地震力が屋根面に伝 達される可能性があり,設計時の想定以上の水平 力が屋根面および妻構面の屋根支承部に作用する 危険性がある。

(b) 妻構面の屋根支承部
 図 11 屋根支承部せん断力係数と屋根面
 等価せん断剛性比の関係

5. まとめ

振動台加振試験およびシミュレーション解析により,屋根部のつなぎ梁と RC の直交梁のせん断剛性や妻構面の水平剛性が高くなることで,中央構面の柱頭部に作用する地震力が屋根面に伝達され,想定以上のせん断力が妻構面の屋根支承部に作用する危険性があることを確認した。今後は,実建物の屋根面等価せん断剛性比の調査を実施し,本解析結果との比較から被害状況との関係性の確認をしていく予定である。

参考文献

- 一般社団法人 建築研究振興協会:東日本大震災における鉄骨置屋根構造の被害調査報告, 2012
- 2)藤田智己ほか: RC 下部構造と鉄骨置屋根の接合部への作用応力に関する横つなぎ材剛性の 影響,コンクリート工学会年次大会論文集,第40巻, pp.787-792, 2018

慣性質量効果を有する液流ダンパーを付加した

1層フレーム試験体の振動台加振試験

横田陽大(仙台高等専門学校専攻科)	藤田智己(仙台高等専門学校)
畑中友(東北工業大学工学部)	船木尚己(東北工業大学工学部)
飯藤将之(仙台高等専門学校)	

1. はじめに

日本では地震による建物の構造的被害を防ぐために様々な策を講じてきた。その結果として東北 地方太平洋沖地震や熊本地震のような大地震でも、建物における構造的被害は減少傾向にある。そ の一方で、地震による設備の落下や家具の転倒など非構造部材や建物の内部の被害が使用者に危害 を与え、地震後の建物の継続的使用ができない事象が発生するなどの問題が生じている^{1),2)}。

著者らは、地震による建物の内部被害を軽減するための新たな制震装置として、従来のダンパー と比較して大きな応答低減効果を簡易に得られる可能性を有する流体の質量移動効果を用いた慣 性質量ダンパー(以降、慣性質量液流ダンパーとする)の開発を進めている^{例えば 3)、4)}。

本論では1層フレームに慣性質量液流ダンパーを付加した縮小試験体の振動台加振試験を実施 し、試験結果から本ダンパーを付加した際の振動応答特性の変化を明らかにするとともに、地震に 対する有効性を確認する。

2. ダンパーの概要

本ダンパーは、図1に示すように1対の ピストンシリンダー相互を細い管で連結 した形状となっている。ダンパー内部には 液体が封入され、シリンダーとピストンの 隙間には液漏れを防ぐためのシール材が

図1 慣性質量効果を有する液流ダンパーの概要

充填されている。外力によるピストンの変位に応じて、ダンパー内部の液流が連結管内を移動する ことにより慣性質量効果とエネルギー吸収が発生し、これを建物の応答低減に利用する機構となっ ている。

本ダンパーを付加した1層建物における振動方程式は,

 $(M_F + \beta^2 m_a) \ddot{x} + C_F \dot{x} + K_F x + F_f + F_s = -M_F \ddot{x}_0$ (1)

となる。ここで、 M_F はフレームの質量、 C_F はフレームの減衰係数、 K_F はフレームの剛性、 m_a は連 結管内の液体の質量、 β はシール材厚さを考慮したピストン部面積 A(以降、ダンパー有効断面積 とする)と連結管の断面積 a の比(A/a)を示す。本ダンパーは $\beta^2 m_a$ の慣性質量により、建物の

^{*}Shaking Table Test of One Story Test Specimen Frame with Liquid Damper by Takahiro Yokota, Tomomi Fujita, Tomoyuki Hatanaka, Naoki Funaki, Masayuki Hando

長周期化を実現し, 液流による抵抗力 F_f, シール材の抵抗力 F_sによって減衰を与える。加えて, この慣性質量には入力地震動の低減を与える作用も有する。

図1に示すように、本ダンパーでは、ピストン部の変形xに伴って、液体がシリンダーおよび連結管内を移動する際に急縮小部、急拡大部、連結管内部の3点で圧力損失を発生し、液流抵抗が発生する。

3. 振動台加振試験の概要

本試験で用いるダンパー試験体の平面図と断面図を図2に示す。フレームには、ダンパーを2台 1組として使用し、内径10mmの鋼製の連結管により連結して試験体を構成する。連結管の長さは、 0.5m、1.0m、2.0mの計3ケースとし、ダンパーに封入する液体には水道水を用いる。

図2 ダンパー試験体(左:断面図 右:平面図)

写真1,図3に示すように、1層フレーム試験体 を、厚さ8mmの鉄板の梁と厚さ4mmのアルミ板の 柱から構成し、基礎梁を介して振動台に固定する。 ダンパーは梁中央に固定されたダンパー固定用治 具を介して設置する。フレームの水平変位にともな って生じる固定治具と基礎梁との相対変位によっ てダンパーが駆動し、応答低減効果をもたらす。

加振試験の入力地震動として正弦波および八戸 EW 波(1968年 十勝沖地震),タフト EW 波(1952 年 Kern County 地震),JMA 神戸 NS 波(1995年 兵

写真1 フレーム試験体全景

庫県南部地震), BCJ-L1 波の4 種類を用いる。振動台の性能を考慮して入力加速度が最大 2.0m/s² に収まるように入力レベルを調整した。なお, BCJ-L1 波については, ダンパーが付加されること によるフレーム固有周期の変化域が応答加速度一定領域の周期帯に収まるように時間軸を 1/2 に縮 めて用いた。減衰定数 3%で,入力レベルを調整した入力地震波の加速度応答スペクトルを図4 に 示す。写真1に示すとおり,1層フレームと振動台に取り付けた加速度計で応答加速度を,1層フ レームと振動台の横に取り付けたレーザー変位計でフレームの相対変位を,ダンパーに取り付けた ロードセルでダンパー抵抗力を計測した。更に,各ダンパーのシリンダーおよび連結管両端部の計 4か所に圧力計を取り付けダンパー内の内圧を計測した。シリンダーと連結管に取り付けた圧力計 の差により、本ダンパーにおける急拡大部、急縮小部の圧力損失を、連結管両端部2か所の圧力計 の差により、管内摩擦による圧力損失を計測した。

はじめに,正弦波加振試験により各ケースの 固有周期と加速度応答倍率を確認し,次に,地 震波加振試験より各ケースの等価減衰定数に 対する加速度応答スペクトルから周期変動に よる応答低減効果を検討した。

4. 正弦波加振試験結果

正弦波加振試験より求めた共振曲線,および それぞれの変位 - 内圧差履歴ループ,変位 - 慣性力履歴ループの結果を図5~8 に示 す。ここで,慣性力は試験体質量とフレーム 応答加速度の積である。図5に示すように, 応答倍率は,管長が0.5mの時に約6倍,管 長が1.0mの時に約4倍,管長が2.0mの時は 約2倍となり,ダンパーを付加することで, どの試験体のケースにおいてもダンパー無 の時に比べ加速度応答倍率の最大値を抑え ることができ,その効果は連結管が長いほど 大きい。固有周期はダンパー無の場合に比べ, 管長0.5m、1.0mで短くなっているが,これ

図4入力地震動の加速度応答スペクトル(h=3.0%)

はダンパーを構成するシール材の剛性が付加されたためである。

管長 0.5m の時に 0.16 秒, 1.0m の時 0.20 秒, 2.0m の時 0.26 秒と,連結管が長くなり管内の液体 量が増えることで慣性質量が増加し,長周期化される結果が得られた。本ダンパーの液流抵抗につ いて,管内摩擦,急縮小部,急拡大部の変位 - 内圧差履歴ループを図 6~図8 に示す。

管内摩擦による内圧差に比べ,急縮小部と急拡大部の内圧差は小さく,エネルギー吸収もほとん どないことがわかる。また,管長を長くすると変位 - 内圧差履歴ループの負剛性の傾きが大きくな ることが確認でき,結果として変位 - 慣性力履歴ループの傾きは小さくなり,建物が長周期化され る。

5. 地震波加振試験結果

各地震波における加速度応答スペクトルを用いて地震波加振試験の結果を整理したものを,図9 ~12 に示す。なお,各応答スペクトルは,地震波加振試験結果より得られたそれぞれの固有周期 における応答加速度と一致するよう減衰定数を調整して作成している。

地震波加振試験の結果を一覧にまとめたものを表1に示す。表内の等価粘性減衰定数は、地震波 加振試験と応答スペクトルとの対応より求めたものである。

表1および図9~図12に示すように、全ての地震波ケースでダンパー無しのケースに比べてダンパーを付加することにより応答加速度を1/2程度に低減することができている。また、連結管の長さを変化させた場合、地震波によって減衰定数にばらつきがあるものの、連結管を長くするほど減衰定数は大きくなる傾向を示し、正弦波加振試験と同様の結果が得られた。

図9 加速度応答スペクトル (BCJ-L1波)

(JMA 神戸 NS 波)

図11 加速度応答スペクトル(八戸 EW 波)

図12 加速度応答スペクトル(タフト EW 波)

中雪斗	試験体	最大振動台	最大応答	最大応答	ダンパー	加速度	等価減衰定数
地辰彼	ケース	加速度[m/s²]	加速度[m/s ²]	変位[mm]	抵抗力[N]	応答倍率	heq [%]
	ダンパー無	1.98	14.52	16.5	_	7.32	0.3
BCI11波	0.5m	2.16	4.70	2.64	77.2	2.18	7.0
DCJ-L1 //X	1.0m	2.15	3.89	2.4	76.8	1.81	11.0
	2.0m	2.18	3.43	2.43	104	1.58	13.0
	ダンパー無	1.94	5.29	6.16	_	2.73	0.3
JMA 神戸	0.5m	1.39	2.03	1.18	32.6	1.46	4.0
NS 波	1.0m	1.47	1.69	1.06	31.3	1.15	30.0
	2.0m	1.44	1.77	1.39	32.1	1.23	38.0
	ダンパー無	1.10	4.65	5.47		4.24	0.3
八戸	0.5m	1.11	2.02	1.21	30.8	1.82	3.0
EW 波	1.0m	1.13	1.60	1.06	24.0	1.42	19.0
	2.0m	1.09	1.38	0.86	22.9	1.27	30.0
	ダンパー無	2.25	14.97	17.54	_	6.67	0.3
タフト	0.5m	2.11	3.58	2.31	52.4	1.69	8.0
EW 波	1.0m	2.16	3.12	2.3	49	1.44	20.0
	2.0m	2.15	2.47	1.55	55.7	1.15	44.0

表1	地震波加振試験結果と等価減衰定数の出	比較
----	--------------------	----

入力地震波の違いについて検討してみると, BCJ-L1 波, 八戸 EW 波およびタフト EW 波では連結管が長くなるほど加速度応答倍率は低減している一方で, JMA 神戸 NS 波では管長が 1.0m のケースよりも 2.0m のケースで加速度応答倍率は高くなり, 管長と応答低減効果が比例関係を示さない場合もあることが確認された。

本ダンパーの慣性質量効果は、連結管内の液体質量 *m_a* やダンパーのピストンと連結管の断面積 比βの2乗に比例する。そのため、連結管の延長等の改良により慣性質量効果を増加させ、免震構 造の周期帯まで建物の長周期が実現できれば、既存の建物へ本ダンパーを付加するだけで簡易免震 化が可能となると考える。

6. まとめ

液流ダンパーを付加した1層フレームの振動台加振試験を行い,以下の知見を得た。

- 正弦波加振試験より、連結管が長いほど慣性質量効果が増大し、フレームの固有周期の長周期 化と、高い応答低減効果が得られることを確認した。また、ダンパーによるエネルギー吸収が主 に管内摩擦で発生していることを確認できた。
- 2) 地震波加振試験より、管長を長くするとそれに伴い等価減衰定数が大きくなる傾向があること を確認した。BCJ-L1 波のように応答が一定となる周期帯での応答の場合、連結管の管長を長く するほど応答低減効果が高くなる。しかし、JMA 神戸 NS 波をはじめとした地震波では、慣性質 量効果による固有周期の変化の影響により、連結管を長くするだけでは応答低減に繋がらないケ ースもあり、最適な応答低減効果を得るためには、入力地震動の周期特性を考慮してダンパーの 形状を決める必要があることがわかった。これらの課題については継続的な検討を行う予定であ る。

謝辞

本研究は,科学研究費(基盤研究(C) No17K06652,建物の機能維持を目指した慣性質量効果を 有する制振機構の実建物への適用に関する検証,研究代表:船木尚己)のもとで実施されました。 ここに記して感謝を表します。

参考文献

- 畑中友ほか:東北地方太平洋沖地震における学校建物の機能被害とその要因分析、コンクリート工学年次大会 2014, Vol.36, pp.961-966, 2014.7
- 2) 国土交通省,国土技術政策総合研究所:熊本地震における建物被害の原因分析を行う委員会報 告書,2016
- 3) 鈴木敦詞ほか:慣性質量効果を有する液流ダンパーの抵抗特性,日本建築学会大会学術講演梗 概,pp.1007-1008, 2013
- 4) 畑中友ほか:慣性質量効果を有する液流ダンパーを用いた1層フレーム試験体の振動応答特性, 構造工学論文集 Vol.63B, pp.205-211, 2017

被害に関する文献調査*

秋田大学 地方創生センター 水田 敏彦

北海道大学 名誉教授 鏡味 洋史

1. はじめに

筆者らは秋田県内に被害を与えた明治 以降の被害地震について,当時の地方新 聞,郷土出版物,行政資料などの文献調査 を進めている。これまで県内の広域に被 害を及ぼした1896年陸羽地震,1914年秋 田仙北地震および局地的な地震である 1955年二ツ井地震などについて,被害お よび分布,震災対応などを順次明らかに している。一方,これらの地震の他に秋田 県内に被害を及ぼした被害地震も数多く 知られている。明治期以降に発生した地 震で秋田県に被害を生じた地震につい て,宇佐美らの日本被害地震総覧¹⁾から

表1 秋田県の主な被害地震(1894~2011年) [*印はこれまで文献調査を行った地震]

番号	発生日	М	地震名,震央	秋田県の被災地
311*	1894.10.22	7.0	庄内地震	由利郡
317*	1896.08.31	7.2	陸羽地震	仙北·平鹿·雄勝郡
344	1901.08.09	7.2	青森県東方沖	小坂, 毛馬内
366	1906.10.12	5.4	秋田県北部	阿仁合
398*	1914.03.15	7.1	秋田仙北地震	仙北·由利·平鹿郡
399	1914.03.28	6.1	秋田県平鹿郡	平鹿郡
494*	1939.05.01	6.8	男鹿地震	男鹿半島
533*	1955.10.19	5.9	二ツ井地震	二ツ井,響
538	1957.03.01	4.3	秋田県北部	二ツ井
561	1964.05.07	6.9	男鹿半島沖	男鹿半島,八郎潟
562	1964.06.16	7.5	新潟地震	日本海沿岸
565	1964.12.11	6.3	秋田県沖	八郎潟
580*	1968.05.16	7.9	1968 十勝沖地震	鹿角郡
598	1970.10.16	6.2	秋田県南東部	東成瀬,山内
639	1982.01.08	5.2	秋田県中部	阿仁
645	1983.05.26	7.7	日本海中部地震	日本海沿岸北部
712	1996.08.11	5.9	鬼首付近	雄勝郡
731	1999.02.26	5.1	象潟付近	象潟
818	2008.06.14	7.2	岩手·宮城内陸地震	湯沢, 横手
841	2011.03.11	9.0	東北地方太平洋沖地震	湯沢, 横手
844	2011.04.01	5.0	秋田県内陸北部	大館
845	2011.04.07	7.2	宮城県沖	仙北·平鹿·雄勝郡
849	2011.04.19	4.9	秋田県内陸南部	大仙

選び表1に示す。番号は日本被害地震総覧の中で付けられている一連の地震番号である。小論 では、これらの中から1906年と1982年に秋田県森吉・阿仁地域で発生した二つの地震を取上 げ、当時の新聞記事から被害の実態、分布を明らかにする。被災地が限られる地震であるが、 当該地域のみならず県内の地震防災を考える上の基礎資料として重要であると考えている。

2. 1906 年および 1982 年の秋田県森吉・阿仁の地震と被災域の概要

日本被害地震総覧¹⁾による両地震の諸元を以下に示す。また,震央の位置を図1に示す。 <u>1906年の地震</u>:1906年10月12日,10時4分,秋田県北部, $\lambda = 140.5^{\circ}$ E, $\phi = 40.0^{\circ}$ N,M =5.4,また,同日9時56分にも同程度の地震($\lambda = 140.5^{\circ}$ E, $\phi = 40.0^{\circ}$ N,M=5.6)があっ た。被害については、『北秋田郡阿仁合町で石塀の崩壊などの小被害あり』と掲載されている。 <u>1982年の地震</u>:1982年1月8日,5時37分,秋田県中部, $\lambda = 140.29'$ E, $\phi = 40.1'$ N,M=5.2, h=0 km,被害については、『阿仁町で物体の落下,窓ガラスの破損,小学校の校舎の壁や床に 亀裂』と掲載されている。

^{*}Literature survey of Akita-ken Moriyoshi-Ani earthquakes of 1906 and 1982 by Toshihiko Mizuta and Hiroshi Kagami

両地震の主な被災域は秋田県森吉町および阿仁町であ る。秋田県の中央部北側に位置し,森吉町は1956年北秋田 郡米内沢町と前田村が合併し森吉町となり,阿仁町は1955 年に阿仁合町と大阿仁村が合併し阿仁町となった。これら の地域は米代川支流の源流部に当たり,阿仁鉱山の金,銀, 銅の採掘で栄えた町である。また,積雪は平地部でも1mを 超え,山間部では2m以上を記録する豪雪地帯でもある。さ らに,2005年に北秋田郡の森吉町,阿仁町,鷹巣町,合川 町の4町が合併し,現在は北秋田市の一部となっている。

3. 新聞記事

3.1 1906年の地震

秋田の代表紙である秋田魁新報のマイクロフィルムを資料とした。地震に関する記事は地震発生翌日の10月13日 と翌14日に表れる。被害に関連する記事のみ選び以下に記 す。●印は大見出し、◎は小見出し、『』は記事の引用を、 《》は記事の要約・説明を示す。

図1 対象とした地震の震央

秋田魁新報

【10月13日】3面: ◎昨日の地震(秋田測候所報)『本日起こりし2回の地震は近来稀れなる 強震にて最大水平動5粍8に迄達せり而して今回の地震は其震源地は秋田近海にあるものの如 く其波動区域は南は新潟より北は函館に渉り秋田は其震動最も強烈なりとす』《秋田測候所の 験測結果》◎昨日の強震『昨日午前10時2回の強震あり第1回は第2回より強烈に家屋震動し 人々は戸外に出づる程なりき方向は東南より西北に向ひたる如し』 ◎時計止まる『昨日の地 震は余程強烈にて大曲辺は時計止り市内にも止まりしものあり而して北秋田方面は微弱なりし といふ』 ◎編輯日誌『午前10時頃,強震2回あり,楼上楼下の社員悉く戸外に避けた』

【10月14日】3<u>面</u>: ◎一昨日の強震『一昨夜10時58分頃又々強震ありしも暫時にして止り』 3.2 1982年の地震

秋田の代表紙である秋田魁新報,被災地域を含む能代市をエリアとする北羽新報,北秋田市 をエリアとする秋北新聞,大館市をエリアとする北鹿新聞を参照し,マイクロフィルムを秋田 県立図書館で閲覧コピーし資料とした。地震に関する記事は地震発生の当日の1月8日付夕刊 から1月10日の紙面まで表れる。被害に関連する記事のみ選び以下に記す。●印は大見出し, ◎は小見出し,」印は見出し内の改行を,『』は記事の引用を,《》は記事の要約・説明を示す。 また,▲▽◆は記事の中で使われている▲▽◆印である。

秋田魁新報

【1月8日】5<u>面</u>:●森吉山周辺で直下型地震」阿仁,鹿角は大揺れ」8日早朝秋田駅は震度4 記録『北秋田郡で直下型地震が発生,最強だった午前5時38分には鷹巣町で震度3,秋田市で 震度2を記録した。この地震で奥羽,羽越両本線をはじめ,五能,阿仁合,男鹿の各線で線路 点検などのため列車の運転を一時中断した。仙台管区気象台によると,震源地は北秋田郡の森 吉山周辺のごく地表に近い部分。(中略)同気象台は阿仁町役場などから電話で収集した情報か ら、震源地に近い同町や鹿角市などでは震度3ないし4の弱震か中震並みの揺れがあったと推 定している。また秋田,二ツ井,羽後本荘の3駅の地震計はいずれも震度4を記録した。(中 略) 仙台管区気象台による各地の震度は次の通り。▽震度3(弱震) 鷹巣▽震度2(軽震) 秋田, 八戸, 酒田▽震度1(微震) 盛岡』 ●通勤の足混乱秋鉄局『国鉄は最も揺れが激しかった午前 5時38分に,秋田,羽後本荘,二ツ井の3駅の地震計が,震度4を記録。このため,秋鉄局は 奥羽本線の羽後境-追分間と北金岡-鷹巣間,羽越本線の象潟-秋田間,それに男鹿,阿仁合, 五能の3線で線路に異状がないかを点検した。いずれも同8時半までには何らの異状も認めら れずに復旧したが、この間列車は全面ストップ(中略)秋田空港は未明からの除雪と並行して 滑走路の点検を行い、午前7時の除雪終了後も異状がないことを確認した』 ◎家具ガタガタ 秋田市『市民は布団をはねのけて起き出した。蛍光灯は動き,調度品や家具もガタガタ』 ●校舎の床や壁に亀裂」阿仁合,根子の両小で『震源地に近い森吉町と阿仁町の住民は一夜を まんじりともしないで過ごした(中略)阿仁町の比立内地区では不気味な地響きが鳴り,茶碗, コップが落ちるほど。森吉町の桐内沢,根森田地区では,遠雷のような音が鳴りやまず,とき どきズシーンという音とともに激しく揺れた。鷹巣町でも大きく揺れた。森吉署に入った連絡 では大きな被害はなかったものの、阿仁町比立内の幸屋渡で店舗の陳列品が棚から落ち、酒瓶 やしょうゆ瓶などが割れた。北秋田郡阿仁町の町教委に入った報告によると8日未明の地震で 阿仁合小,根子小の校舎の床や壁に亀裂が入った。阿仁合小は1階図書室の床に数本の亀裂で, 長いもので2メートル近く,短いもので数センチ。また,給食室の壁にもヒビ割れが数本入っ た。同小は51年春の完工で鉄筋コンクリート建て。床にはPタイルを張っている。根子小は2 階の教室に長さ数十センチの亀裂が数本,1階の教室は前からあったヒビが大きくなった程度。 同小は42年の建築で鉄筋コンクリート建て。両小とも授業に差しつかえるほどの危険はない』 【1月9日】13面:●「森吉山付近に活断層?」東北大地震予知センターが推測 ●森吉小で 蛍光灯落下」簡易水道も被害」直下型地震の鷹巣阿仁『県消防防災課が同日午後1時現在でま とめた被害調べによると、阿仁町の根子小の体育館や教室の床、阿仁合小の図書館の床、町立

部が破損, 簡易水道も被害を受け, 十数個が断水, 小さな亀裂の生じた町道もあった。また森 吉町でも森吉小で蛍光灯 10本が落下した。このほか, 酒店などで清酒やウイスキーがタナから 落ちて割れたり, 窓ガラスが破損するなどの被害が出た』

体育館壁などに小規模の亀裂生じたほか、林業研修センターと山村開発センターのタイルの一

北羽新報

【1月9日】7<u>面</u>:●早朝にグラリ列車ストップ」森吉周辺で直下型地震」二ツ井で震度4通勤 列車など2時間半『各地の震度は鷹巣町が震度3の弱震だったほか,秋田市,青森県の八戸市, 山形県酒田市が同2の軽震,岩手県盛岡市,山形県新庄市が同1の微震となった。能代市は地 震計がないので,はっきりしないが,震度3から2とみられている。地震による建物の損壊な どの被害はでていないが,国鉄で独自に設置している線路沿いの地震計は,秋田,本荘,二ツ 井,八郎潟の4カ所で震度4の中震を観測した。このため,秋鉄局では午後5時39分から奥羽 線の北金岡-鷹巣間など2カ所,羽越線の一部,それに五能線,阿仁合線の全線で列車の運転 を見合わせ,各地区の保線区員が,管轄の線路点検を行った。奥羽線は同8時30分すぎ,五能 線は同7時30分ごろにやっと運転が再開された(中略)運転規制がちょうど,通勤通学の時間 帯だったため,列車で通勤しているサラリーマンなどの遅刻が相次いだ。学校の場合は冬休み 期間中だったため,授業に影響はなかったが,補習授業をしている能代北の生徒や各高校の運 動部員らの足が乱れた。秋鉄局によると,国鉄五能線では53年に強風のため,能代-向能代間 で運転中止の規制をしたことがあるが,地震による規制は近年なかったという』

【1月10日】7<u>面</u>:●どちらが正しい震源地」森吉山地震気象台と予知センターの誤差7キロ 『県消防防災課は,地震の情報や被害状況を収集しているが,秋田地方気象台と東北大学地震 予知観測センターが調べた震源地が違っていることが判明した。双方とも森吉山付近としては いるが,緯度,経度から調べると震源地が7キロほども異なっている』

秋北新聞

【1月10日】1面:●続出した軽微の被害」阿仁部直下型地震の"余波"『森吉山周辺で起きた 直下型地震は、阿仁町と森吉町で水道管の亀裂学校や開発センターなどの建物の一部が破損し たり、商店で酒びんが落ちたりしたほか、一般家庭でも食器類に軽微ながら被害が出た。しか し、けが人などはなく被害程度も総額で200万円ほどと見ている。森吉警察署・鷹巣阿仁広域 消防本部で8日朝までにまとめた主な被害は次の通り。◆阿仁町▽根子小学校の音楽室・女子 トイレのコンクリート床にくもの巣状の亀裂▽阿仁町開発センター玄関床タイル 80 枚ほどが はがされた▽町道下浜瀬地内のアスファルトが長さ60メートルほどにわたって亀裂▽町立体 育館の壁に亀裂(規模は調査中)▽直木地内で道路横断の簡易水道管が破裂して13戸ほどが一 時断水▽林業研修センター2階タイルが落下▽高嶋製材所で工場の床に1.6メートルにわたっ て亀裂◆森吉町▽森吉小学校で蛍光灯10本が破損▽森吉郵便局でガラス破損▽松浦商店の壁 が1.8メートル落下』

北鹿新聞

【1月9日】7面:●早朝の地震阿仁町中心に被害」校舎に亀裂,民家の断水など『鷹巣町で震 度3の弱震を記録したほか、秋田市、山形県酒田市、青森県弘前市など東北各地でも軽、微震 を記録。震源地の県北部を中心に、家屋の壁、床の亀裂、窓ガラスの破損などの被害があった のを始め国鉄が最高2時間半にわたって全面ストップ。通勤客の足が乱れるなどの様々な影響 があった。(中略)阿仁町一帯を中心に人家の窓ガラスが割れたり,壁がハガれ落ちたりする被 害が続出。森吉書、阿仁町役場によると、阿仁町根子小学校2階の2教室でコンクリート床に 亀裂が生じたほか、阿仁町開発センター玄関床のタイル 80 枚がハガれた。さらに、同町銀山下 新町, 高嶋製材所工場のコンクリート床面に長さ1メートル 60 センチ, 深さ 7 センチにわた って亀裂が生じた。また同町下浜瀬地内の町道が長さ 60 センチ,幅2メートルにわたって裂 けたが、通行に支障はなかった。このほか、阿仁町立体育館の壁が亀裂、森吉小で天井に吊し てあった蛍光灯が 12 本落下し破損。森吉郵便局で 126 センチ×40 センチの窓ガラス 1 枚が破 損。阿仁町林業研修センター2 階トイレ部分のタイルが落下。同町真木地区で簡易水道が昼過 ぎまでの間断水,15戸の住民が飲料水の確保に追われた。また,比立内,阿仁町銀山などの酒 店で日本酒シャンペン,ワインなど 20 数本が転倒,破損する被害が出たほか,森吉山ふもとの 阿仁町打当地区の民家では、突き上げるような揺れのため天井が落下。地震による火災や家屋 の倒壊による人的被害はなかったものの、阿仁町、森吉町一帯で様々の被害が出た』

4. 被害のまとめ

4.1 1906年の地震

被害に関する記事を整理し表2に示す。被害が記載されている資料「秋田気象三十年報」²⁾ を新たに見つけ追加した。秋田測候所が1886年から1915年までの中強震以上の地震をまとめ た表があり、震域と被害が記載されている。中強震部と弱震部の範囲が示されており『中強震 部:羽後、陸奥を含み面積590方里』『弱震部:陸中、陸奥、羽後、渡島(現函館市東部)を含 み陸地面積1210方里』と記されている。また、被害を抜き出し、被害の分布を当時の鉄道と主 要道路と供に示すと図2のようになる。被害は震央に近い北秋田郡に限られており『秋田郡阿 仁合町古河鉱業場の石塀崩壊したる等同郡内には多少の被害あり』と記されている。その他、 震央から40km~60km程度離れた秋田市と大曲町で時計が止まったことが報じられている。

図2 1906年の地震被害分布

4.2 1982年の地震

被害に関する記事を整理し表3に示す。また,被害を抜き出し,被害の分布を当時の鉄道と 主要道路と供に示すと図3のようになる。建物被害の分布は森吉町と阿仁町に集中し,小学校 や公共建物等で壁の落下や亀裂,窓ガラスの破損が発生していた。また,簡易水道や町道の被 害が報じられている。このほか鉄道被害が大きく報じられており,秋田魁新報に『秋田,羽後 本荘,二ツ井の3駅の地震計が震度4を記録。このため,秋鉄局は奥羽本線(中略)それに男 鹿,阿仁合,五能の3線で線路に異状がないかを点検した。いずれも同8時半までには何らの 異状も認められずに復旧したが,この間列車は全面ストップ。ダイヤは大幅に乱れた』ことが 記されている。当時の国鉄の機械式地震検知器(警報感震器)は、中村³⁾によると『地震動を 水平2方向成分に分割し、それぞれに対して規定の加速度レベルを超えるかどうかを監視する もの』であり、『警報は、概ね気象庁震度階の4,5,6に対応する25Gal,80Gal,250Gal など に設定』されていた。一方、特別豪雪地帯での1月に発生した地震であるが、雪の影響は見ら れなかった。なお、秋田県気象月報⁴⁾によると、被災域(大阿仁観測所)における地震当日(1 月8日)午前9時の積雪深さは53 cmであった。

郡名	旧市町村	集落	秋田魁新報	北羽新報	秋北新聞	北鹿新聞
北	森吉町	小又	酒店などで酒瓶,窓ガラス破損		松浦商店:壁落下	
秋		森吉	森吉小: 蛍光灯 10 本落下		森吉小:蛍光灯 10 本破損	森吉小:蛍光灯 12 本破損
田					森吉郵便局:ガラス破損	郵便局:窓ガラス1枚破損
郡	阿仁町		震度3ないし4		町道下浜瀬地内のアスファル	下浜瀬地内の町道:長さ60
			町道:小さな亀裂		トが長さ 60 メートルほどに	メートル,幅 2 メートル裂けた,通行
					わたって亀裂	に支障はなかった
		比立内	幸屋渡店舗陳列品落ち,酒瓶やし			酒店で酒瓶転倒破損被害
			ょうゆ瓶などが割れた			
		打当				民家突き上げるような揺
						れ天井落下
		水無	阿仁合小:1 階図書室の床数本亀		町立体育館:壁亀裂	町立体育館:壁亀裂
			裂,結食室の壁に割れ数本			
		± 1.	町立体育館:壁小規模亀裂 		LL MG TH LATIN A THE A LL HET	
		具不	林美研修でリーニッイル一部破損		林美研修で29-:2 階94ル洛	阿1_町林美研修で29-:2 階ト しのりいます。
			間易小道:被舌干级尸肉小		□ 古 ★ 地 内 飾 目 ★ 道 答 確	110.0711/2谷下 古士地区館日水道紙水 15
					回小地内間勿小道官恢 刻 12 百ほど一時断水	具不地区間勿小追剛小 13 百の住民
		纪山	山は問惑かりかったい一部破場		表13) はこ 時間小 間発む///	開発かゆー 支閲店り/ル 80 枚
		111 212	四个1册元127 .747 时间以1页			用光(2) . 公園水71/ 80 仅
					高嶋魁材所・丁場の床16	銀山下新町高嶋魁材所丁
					メートルにわたって亀裂	場:コンクリート床面長さ1.6 メート
					,	N,深さ7センチ亀裂
						酒店で酒瓶転倒破損被害
		根子	根子小:2 階教室長さ数十センチの		根子小:音楽室・女子トル	根子小:2階の2教室コンクリー
			亀裂数本,体育館教室の床亀裂		のコンクリート床亀裂	卜 床亀裂
	鷹巣町		震度 3	震度 3		震度 3
鹿角郡	鹿角市		震度3ないし4			
	能代市			震度 3~2		
				建物被害なし		
	秋田市		震度 2,蛍光灯は動き,調度品や家	震度 2		震度 2
			具もガタガタ			

表3 1982年の地震被害のまとめ

図3 1982年の地震被害分布(■:建物被害 ◎:水道被害)

5. まとめ

1906年と1982年に秋田県森吉・阿仁で発生した地震について,新聞記事を中心に被害の状況を整理した。1906年の地震については,阿仁合町の古河鉱業場で石塀崩壊し,北秋田郡内に多少の被害ありと記載されていた。また,秋田測候所の験測結果が報じられている。1982年の地震については,森吉・阿仁の小学校や公共建物等で壁の落下や亀裂,窓ガラスの破損が発生していた。また,道路・水道被害も発生し,鉄道への影響も見られた。一方,特別豪雪地帯での1月に発生した地震であるが,雪の影響は見られなかった。

謝辞 本研究は科学研究費補助金(基板研究(C)18K04651)の助成を受けたものである。

参考文献 1) 宇佐美龍夫ほか4名:日本被害地震総覧,東京大学出版会,2013.2) 秋田測候所:秋田 気象三十年報,130pp,1916.3) 中村豊:リアルタイム地震動モニタリンガ,土木学会,リアルタイム地震防災シンポ ジウム論文集,pp.37-41,1999.4) 秋田地方気象台:秋田県気象月報,pp.21,1982.

1914年秋田仙北地震と秋田県師範学校*

北海道大学 名誉教授 鏡味 洋史

秋田大学 地方創生センター 水田 敏彦

1. はじめに

1914年秋田仙北地震は図1に示すように,内陸の秋田県仙北郡を震源とする,M=7.1の地震 で,震央から約35km離れた秋田市内でも負傷3,全壊3,半壊3の被害を生じた。なかでも秋 田鉱山専門学校では1年前竣工のレンガ造校舎が大破するなど大きな被害を生じた。筆者らは 文献調査を行い,同校の被害の詳細を明らかにした¹⁾。同校は秋田市街地に隣接する田圃の埋 立地に新設され,南隣には秋田県師範学校も移転しており,同地震で被災している。本論では, 秋田県師範学校に着目し1914年秋田仙北地震との関わりについて文献調査を行う。

図1 1914年秋田仙北地震の被害分布と秋田市(数字は住家全潰率%)

^{*}The 1914 Akita Senboku earthquake and Akita Prefectural College of Education by Hiroshi Kagami and Toshihiko Mizuta

2. 秋田県師範学校の沿革と手形キャンパス

前身は 1873 年創設の伝習学校まで遡り 1886 年に秋田県師範学校として旧藩校の所在地東根 小屋町(現:中通)に開校, 1909 年女子師範学校を分離し男子校となった秋田師範学校は南秋 田郡旭村手形字深田に移転した。同地は 1909 年 5 月に造成を始め 1909 年 12 月には秋田市に編 入されている。1913 年 10 月には手形新校舎が完成し落成式が行われたが,翌年の 1914 年 3 月 には秋田仙北地震で被災している。

1949年には新制の秋田大学学芸学部(現:教育文化学部)にキャンパスとも継承され現在に 至る。図2は1912年測量の2万5千分の1の地形図で,手形地区の造成地に練兵場,鉱山学校, 師範校が記載されている。同校の敷地の南北には低平な水田が広がっている。

図2 1912年測図の秋田市の地形図と手形地区の造成地(1912年測量1:25,000地形図)

3. 文献調査

秋田仙北地震関係の文献から秋田県師範学校に関する記載のあるものを以下に示す。

<u>秋田県簿冊</u>:大正3年震災関係書類壱庶務課²⁾:秋田県公文書館に保管されており,その中に 秋田県師範学校関係の書類が残されている。被害に関しては集計表の中で秋田県師範学校の被 害額は建物1779円,書籍器械229円,備品70円であり,書籍器械,備品等については個別の 詳細な調査一覧表がある。3月22日には生徒を震災地に派遣しており,経費の申請,復命書が 残されている。

新聞記事:秋田魁新報には秋田県師範学校に関して,次の2件の新聞記事が掲載されている。 【3月16日号外2面】▲県立学校の薬品 各県立学校の理化学器械薬などの破損夥し又師範中 学土蔵に破損又は亀裂せるもの多し【3月20日3面】○師範生の視察 師範学校生徒は試験休 みを利用して 22 日震災地を視察し尚見学の為土工手伝を為すといふ。

<u>秋田県師範学校関連図書</u>:秋田県師範学校の記念誌「創立 60 年,秋田県師範学校」³⁾の年表 には『大3年(1914)1月15日:午前4時58分強震あり本校も多少の震害を被れり,大3年8 月28日:震災復旧工事竣工せり』,が掲げられている。卒業生の回想文集が掲載されているが, 在学中に地震に遭遇し記載のあるのは「大正3年(1914)卒業村上善彦:思い出づる儘に」の

みで『卒業の年の3月には強首の大地震に見舞はれて,跳飛んで外に出た刹那,鉱山学校の大 煙突が折崩れて物凄い光景であった。私は[中略]取急ぎ高師入学の旅路に上つた。其の時は, 未だ線路が曲がって居て徐行して通つた位だ。』と体験談を記している。

<u>震災予防調査会報告</u>:大橋良一「大正3年ノ秋田地震ニ就テ」⁴⁾では師範学校の土蔵の内壁に 生した亀裂について写真を用い説明している。

<u>佐々木金一郎「大震の記」</u>:著者の佐々木金一郎は地震当時師範学校3年生で同校の寄宿舎で地 震を体験している。同氏は卒業後小学校教諭・校長を歴任し,郷里の田根森(現:横手市)の 村長を務め,郷土史家として秋田県史の編さんに関わっている。同氏の日記「大地震の記」で は地震の体験談を述べるとともに,地震に関して新聞記事などから学んだことを細かに記録し ている。日記を所蔵している秋田県立博物館の畑中康博は「佐々木金一郎「大地震の記」」⁵⁾ で全文の翻刻を掲載し,日記の構成について議論している。

4. 秋田県師範学校の被災状況

被害は土蔵に亀裂が入る程度であり,詳細 は大橋の論文に『予は秋田市内各所に於て亀 裂を検し一好例を得たり,即ち秋田県師範学 校の土蔵の内壁に生ぜしものにして,第14 版第1図に見るが如く,壁は正しく南北に走 り、北上より南下に走る圧迫亀裂、南上より 北下に走れるは緊張亀裂なること一目瞭然た るべし。』と写真(図3)入りで示している。 師範学校に被害があったことは新聞記事(秋 田魁新報16日号外2面)にも取り上げられて いるが詳細は報じられていない。また、学校 の記録では復旧工事が8月28日に竣工してい る。秋田鉱山専門学校で大破の被害の生じた のはレンガ造の実験棟で木造校舎の被害は軽 微であった¹⁾。木造校舎が主体であった秋田 県師範学校での被害は同様に軽微であったも のと思われる。

図3 秋田県師範学校土蔵の被害,対角線の ヒビ(大橋⁴⁾による)

5. 秋田県師範学校生徒の活動

生徒の被災地派遣は3月22日に実施されており,生徒10名,引率教諭1名,炊夫1名で強 首村,布又の震源地方面に2泊3日で出かけている。引率教諭兼舎監の白坂高重の「災害地出 張記録」²⁾によれば,

3月22日:

6時50分秋田発,

正午強首村役場着,郡書記と協議,小学校,民家前に天幕,1名を役場に分遣し文書の調 整,

17 時半修業,九升田石川理紀之助出張所にて自炊

3月23日:2名役場で事務,卒業生,在校生の家庭訪問,

13 時半強首村出発,大沢郷村布又の岩石崩壊状況見学,21 時帰宿

3月24日:5時より6時まで九升田村の方法を聴取,

午前中役場事務に従事

と,ある。石川理紀之助は明治・大正期の秋田県の農業指導者であり,1912年に疲弊した強首 村九升田の救済事業に着手し,九升田に石川理紀之助出張所を開設していた⁶⁾。一行は,ここ で自炊し宿所にしている。

図4 秋田県師範学校生徒の被災地派遣

6. 秋田県師範学校生の佐々木金一郎の活動

日記を残している佐々木金一郎は前述の学校行事に参加していないが,別途帰省途中の3月と7月の2回強首方面に同級生とともに出かけ詳細な日記を残している。図5に3月23日の行程,訪問地を示す。

図5 佐々木金一郎による激震地の視察先(3月)

さらに、7月20日には、夏季休暇での帰省を利用し友人の田口君と震源地視察に出かけて いる。日記から行程を列挙すると;

- 7月20日秋田出発:寺館の田口君宅泊
- 7月21日6時出発,寺館小学校,九升田の石川事務所,十七連隊宿舎,大沢郷小学校,布 又到着,作業員相手の茶店,被災の様子聞取,山崩,冠水,洞門による排水,館に戻る, 18時田口君宅泊
- 7月22日10時刈和野発列車で帰郷

図6に行程を示す。

図6 佐々木金一郎による激震地の視察先(7月)

7. まとめ

小論では1914年秋田仙北地震と秋田県師範学校との関わりを文献で追ってみた。文献調査 は秋田県簿冊,新聞記事,学校関係史料,学術雑誌を調査した。秋田県師範学校は秋田鉱山専 門学校と同時期に水田埋立地に新設された敷地に開校した学校で,秋田鉱山専門学校と同様に 地震による被害を受けていた。秋田鉱山専門学校では、レンガ造実験棟,煙突が大破したが, 秋田県師範学校の被害は軽微であった。レンガ造の建物はなく木造の校舎の被害は軽微であっ たと考えられる。

生徒の手記では,敷地内の寄宿舎での地震時の様子を伝えており,鉱山専門学校の煙突の倒 壊の様子などを知ることができる。生徒の被災地での視察行動についての詳細な記録も発見す ることができ,踏査行程を追うことができた。

小論では、被災をした一つの施設について的を絞った文献調査を行った。このようなアプロ ーチも一つの方法であると考え他の地震についても機会をとらえ文献調査を進めていきたい。 文献

- 1)鏡味洋史・水田敏彦:1914 年秋田仙北地震による秋田鉱山専門学校被害の文献調査,歴史地震, 30,51-62,2015.
- 2)秋田県:大正3年震災関係書類壱庶務課,秋田県公文書館所蔵簿冊,142pp,1914.
- 3) 秋田県師範学校: 創立 60 年 (秋田県師範学校), 281pp,1933.
- 4) 大橋良一: 大正3年の秋田地震に就て,震災予防調査会報告,82,37-41,1915.
- 5) 畑中康弘:「大地震の記」について,秋田県立博物館研究報告,37,51-68,2012.
- 6)秋田県教育委員会編:秋田偉人叢書第2輯 石川理紀之助·森川源三郎両翁伝, 43-54, 1938.

津軽平野南部の地震時卓越振動数*

弘前大学 片岡俊一

1. はじめに

観測される地震動は、地下構造の影響を受けることから、精緻な地震動予測の為には、適切に 地下構造の影響を組み込む必要がある。地下構造を知るためには物理探査が直接的ではあるが、 地震動そのものの分析も必要不可欠であろう。そこで、我々は震度の差を地震動増幅の一つと捉 え、津軽平野南部における強震観測点の平均 S 波速度と観測される震度との関係を調べてみた。 その結果、距離減衰が無視できるとすると、両者の対応関係が良いことを明らかにしている¹⁾。

この地域は、強震動が観測される機会は少ないが、最近の地震記録を見ると、地震の規模が小 さいにも拘わらず低振動数成分に卓越が見られるものがある。この卓越は比較的深い地下構造の 影響と思われ、前述のような表層の平均S波速度で評価できるものではない。そこで、低振動数 の卓越振動数について地震動および微動の分析を行ってみた。

2. K-NET 弘前における地震動

2011年東北地方太平洋沖地震以降,秋田県北部から青森県南部で浅い地震がそれ以前に比べる と活発に発生している。そこで,表-1に示す地震の際のK-NET 弘前(AOM016)における記録を 集めて,周波数特性を検討してみた。表-1にあるように取り上げた5つの地震のマグニチュード は4.2~5.0である。表-1に示した地震の震央位置をK-NET 弘前の位置とともに図-1に示すが,震 央距離は38km~71kmである。K-NET 弘前における震度は,地図上で1とした秋田県内陸北部の 地震(M:5.0)による3が最大で,それ以外の地震による震度は1又は2である。

No.	年	月日	時刻	震央地域名	深さ	М
1	2011	4月1日	19:49:44.10	秋田県内陸北部	12	5.0
2	2012	10月6日	01:19:01.80	秋田県内陸北部	3	4.9
3	2016	1月11日	15:26:41.10	青森県三八上北地方	10	4.6
4	2016	7月16日	22:12:48.70	秋田県内陸北部	8	4.6
5	2016	11月2日	14:33:25.60	秋田県内陸北部	6	4.2

表1 検討に用いた地震の諸元

全ての記録を積分し,記録の後半部分約40秒についてフーリエスペクトルを求めた.その結果 を図-2に示すが,水平動では殆どの地震で0.3Hz程度の成分が,上下動では0.5Hz付近に卓越が 見られる。

3. 周辺の地震動との比較

K-NET 弘前近傍の強震観測点として,著者らは南西に2.6km離れた位置にある弘前大学構内および東に1.6km離れた位置にある地点に強震計を設置している。残念ながら,これらの観測では

^{*} Predominant frequencies during earthquakes observed in southern part of Tsugaru plain by Shunichi Kataoka

イベントトリガー方式を採用してお り、一方で地震の規模が小さいため に表-1に示した全ての地震の記録が 得られている訳ではない。ここでは、 3地点で比較可能な No.4 の地震記録 を変位波形にして比較してみる。積 分はフリーソフトウェアの ViewWave を用いて、カットオフ振動数は 0.1Hz として周波数領域で行った。

3 地点の変位波形のうちより長周期 成分が卓越している EW 成分のもの を時刻をそろえて図-3 に示す。弘前 大学構内(HRD)の波形は,K-NET 弘 前の波形とよく似ている。東側の観

測点(JOTO)の波形で も長周期成分が見られ るが,K-NETと比較す るとやや振幅が小さい ように見える。スペク トルでも確認したが, 3地点での卓越振動数 はほぼ同じで約0.3Hz である。

更に範囲を広げ K-NET 弘前から東に 6km ほど離 れた「平川市柏木町震度観測点」(以下,LG.HR-K),「平川市猿賀観測点」(以下,LG.HR-S)の 地震動記録を K-NET との記録比較してみた.具体 的には,2016年1月11日に青森県三八上北地域で 起きた地震(表-1の No.3)の記録を用い,図-2と 比較することから速度成分のフーリエスペクトル で比較してみた.結果を図-4に示す。なお,図-2 のスペクトルとは異なり,継続時間全長のスペク トルである。図からは,平川市の観測点のスペク トルには K-NET 弘前のように 0.3Hz に卓越が見ら れない。

4. 微動の卓越振動数

上述のように, K-NET 弘前で卓越している振動

図-3 K-NET 弘前とその周辺の観測点における 観測記録を積分して求めた変位波形。

数成分はその近傍の観測点では同様に卓越が見られるものの,東側に離れると低振動数の卓越は 見られない。そこで、卓越振動数の空間分布を知るために、弘前大学から平川市の観測点に向 かって測線を展開し、約1.5km毎に常時微動を計測してみた。

用いた微動計は東京測振社製の CV-374AV である。これを最低 30 分間観測点に設置した。図 10 分間のデータ毎に平滑化したパワースペクトルを求めた。更に,水平動と上下動の比(以下, H/V スペクトル)を求めた。参考の為に,K-NET における微動の H/V スペクトル比を図-5 に示す。 図には,NS/UD と EW/UD を区別して示したが,両成分ともに 0.2Hz 付近にピークがあり, EW/UD の方が振幅が大きい。地震動に比べてややピーク振動数が低いが,これは解析長さの違いに起因する分解能の違いによる可能性も考えられる。さらに、3 回分の計測でスペクトル比は ほぼ同じであり,安定していることも分かる。多くの地点で H/V スペクトルは安定していた。また,本題とは関係ないが,この地点では 1Hz よりも高い振動数領域には明瞭なピークがないこと も特徴と言えるであろう。

ここまでは水平2成分は独立に扱ったが,全ての観測点 で2成分間に違いが見られなかった。そこで,H/Vスペク トルの各成分のピーク振動数の平均値を求め、その大きさ と併せて図-6のように空間分布を求めてみた。図から,対 象範囲の西部ではピーク振動数は0.2Hzから0.3Hzの範囲 にあり,図では丸の大きさでピークの高さも高いという特 徴が見られる。この特徴は、本論の最初に説明した K-NET 地点と同様な傾向である。しかしながら、東部地域はピー ク高さが低く、場合によってはピークが明瞭でない地点も ある。これらの特徴は、地震動の特徴と対応している。

図6 津軽平野南部の微動の卓越振動数(低振動数に着目)

5. まとめ

津軽平野の南側で起きた複数の浅い地震による K-NET 弘前における地震動記録には,水平動で は0.3Hzに上下動では0.5Hzに卓越が見られた。K-NET で観測された地震動と同様なものは K-NET に近い観測点でも観測された。一方,津軽平野南東部の観測記録ではそのようなものは見ら れなかった。そこで,地震観測点を含み,その間に測線を展開し,複数点で微動を観測したが上 述の特徴は微動でも同様であり,この間で地下構造が変化していることが示唆される。なお,J-SHIS の地下構造では,この間に急激な変化は見られない。

謝辞

本報告は、弘前大学理工学部地球環境学科を卒業した小野寺一駿君(平成28年度),山内大樹 君の卒業研究を整理してまとめたものである。また、波形処理の一部では、鹿島俊英氏が作成した ViewWave²⁾を利用した。記して謝意を示す。

参考文献

1) 片岡俊一: 弘前周辺の強震観測点における震度と平均S波速度との関係,日本地震工学会・大会-2017 梗概集, P4-9.pdf.

2) 鹿島俊英: ViewWave, http://smo.kenken.go.jp/~kashima/ja/node/2. (2019年1月15日確認)

2018年口永良部火山噴火警戒レベル4での対応と課題**

東北大学災害科学国際研究所 久利美和

名古屋大学大学院地震火山研究センター 山中佳子

1. はじめに

気象庁は 2003 年に火山活動レベルを導入したが,2007 年に廃止し,噴火警報レベルを導入 した。噴火警戒レベルは,火山活動の状況に応じて「警戒が必要な範囲」と防災機関や住民等 の「とるべき防災対応」を 5 段階に区分して発表する指標である。中央防災会議(2011 年, 2012 年)で改定された防災基本計画(火山災害対策編)に基づき,各火山の地元の都道府県等 が設置する火山防災協議会(都道府県,市町村,気象台,砂防部局,火山専門家を含む地元の 関係機関で構成)で避難計画を共同で検討する体制が作られた。こうして地元の避難計画と一 体的に噴火警戒レベルが設定されるようになった(山里ほか,2013)。噴火警戒レベル導入以降, レベル4(避難準備),レベル5(避難)に至った事例は限られている。

2018 年 8 月 15 日,気象庁は口永良部火山の噴火警戒レベルを 2 から 4 にあげた。本研究では、それにともなう住民への対応と住民の対応について調査を行った。聞き取り調査は、2018 年 9 月 7 日に、気象庁福岡管区気象台口永良部火山防災連絡室および屋久島町総務課消防交通係、9 月 8・9 日に口永良部住民を対象に行い、レベル 4 (避難準備) での住民の状況から課題の抽出を行った。

2. 原稿口永良部島火山の最近の動向

ロ永良部島は、鹿児島県の南西部に位置する東西約11kmの島である(図1)。2007年12月1 日より噴火警戒レベルが適応され(図2)、近年では、2014年8月3日(噴火警戒レベル1から 3へ)、2015年5月29日(噴火警戒レベル3から5へ)、2015年6月日(噴火警戒レベル3)に 噴火が確認されている。2014年は噴火直後に台風が接近していたことから、一部の島民が屋久 島に自主避難を行ったが、2015年の噴火では避難指示による全島避難が行われた。2015年5月 29日に口永良部島の新岳火口において火山噴火が発生し、日本の火山において初めての特別警 報(噴火警戒レベル5)が発表され、全島避難が行われた。行政の避難オペレーションについ ては、Sakamoto et. al. (2016)が、住民の情報受け止めと行動については Kuri et. al. (2017)が報 告した。2014年8月の噴火の経験をふまえて具体的な避難行動指針が住民意見を交えて行進さ れ、各家庭にも伝えられていた。さらに、気象台職員を招き勉強会も随時実施していた。学校 と住民が共同し、防災体制の見直し、拡充を図り、火砕流・噴石などのさまざまなケースに備 えた避難体制を詳細に検討していた。2015年5月29日の噴火による避難については、2014年 の経験をもとにした具体策、直前に有感地震もあったことから実質的な避難準備、消防団らの

^{*} Operation and issues under the 2018 volcanic eruption warning level 4 on Kuchinoerabu volcano by Miwa Kuri, and Yoshiko Yamanaka

早急な対応があり、迅速に避難につながった。背景には、非専門家ながら高い関心を持つ地域 住民と専門家の関係構築や不確実性を含めた情報伝達が重要であることが示唆された。

図2 口永良部島噴火警戒レベル導入後のレベルの推移

3. 2018 年噴火警戒レベル4の避難区域設定と住民への情報伝達

気象庁は、2018年4月18日以降、口永良部火山の噴火警戒レベルは2としていたが、2018年8月5日から火山ガス(二酸化硫黄)の放出量が増加し、8日12時ころから火山性地震が増

加,「火山の状況に関する解説情報(臨時)(口永良部島第62号)」を8月8日20時00分に発 表した。その後,火山活動が更に高まり,15日に新岳の西側山麓付近のやや深い場所で火山 性地震が増加したことから,居住地域に重大な被害を及ぼす噴火が発生する可能性があると判 断し,8月15日10時30分の「噴火警報(居住地域)(口永良部島)」で,噴火警戒レベルを2 (火口周辺規制)から4(避難準備)に引き上げたと発表した。8月29日には,火山活動の更 なる高まりは認められなかったことから,気象庁は火口周辺警報を発表し,噴火警戒レベルを 4(避難準備)から3(入山規制)に引き下げた。

8 月初旬以降,活動が活発化していたことから、口永良部連絡室と屋久島町総務課ではレベ ル3以上への引き上げの可能性があるとして、気象台より連絡を受け取っていた。2016年10 月より福岡管区気象台の2名が屋久島町役場のある建物2階に常駐しており、「顔の見える関 係」が構築されていた。8月15日朝8時半頃、気象台より屋久島町あてに電話による連絡があ り、「口永良部西側で地震。レベルを3または4にあげる。」ことが伝えられ、屋久島町総務課 役場口永良部支部の職員、本村・前田区長、消防団団長あてに電話連絡を行った。10時30分、 気象庁はレベル4の「避難準備」を発表した。

気象庁ではおおむね火口から 3 kmの範囲での警戒が呼びかけられていたが,屋久島町では, 警戒は 3 kmの範囲としながらも、立ち入り制限を 2 km圏内にとどめていた。屋久島町はその理 由を,「避難準備」の段階なので,前田地区住民の自宅への立ち入りを可能にするためと回答し た。

屋久島町では口永良部火山に関する年1回の島民向け談話会を開催しており,平成30年度 は8月16日に開催が予定されていたが,15日のレベル4の発表を受け,急遽,懇談会を説明 会に変更した。また,気象台も,8月16-17日に定期観測を予定していたことから,迅速な合同 説明会に至った。8月16日の説明会で挙がった住民の要望に基づき,気象台は,レベル4の判 断について説明を行うとともに,日報配信(火山性地震発生状況,気象支援情報)を8月29日 までの2週間行った。口永良部島の噴火警戒レベル判定基準(平成30年3月29日作成)では, レベル4[居住地域に重大な被害を及ぼす噴火の可能性]はレベル2,3の段階で,体に感じる 地震の発生,山麓の浅い場所を震源とするA型地震の多発の,いずれか一つでも観測された場 合と定められていたが,今回は,火山ガス(二酸化硫黄)量の増加と島西部深部での有感には 至らないもののやや大きめの地震の発生(速報値でマグニチュード1.9)を加味しての判断であ ったと説明した。レベルを下げる判断基準については,一時的に活発化した地震現象がなくな ったのち,2週間程度で行うと回答した。口永良部島毛噴火警戒レベル4にかかわる説明会は 8月26日と29日を含め,計3回行われた。なお,気象台は,2015年の噴火対応以来,定期的 な住民説明会と隔月報の配信を継続している。

4. 住民の対応と状況

避難状況について,8月15日,行政側では口永良部火山活発化に対し「人命優先」として, 屋久島町より口永良部支部を通じて,住民の番屋ヶ峰への避難の提案を受けていたが,台風が 接近していたことから,住民(特に年長者)の避難にはより危険が伴うこと,その時点で噴火 が始まっていなかったことから,本村・前田地区区長の判断で,前田地区住民の避難場所は本 村にある公民館と定められた。前田地区は立ち入り可能ながら警戒が必要となったことで,宿 泊施設の受け入れを停止した。田代地区の住民避難はなかった。屋久島への島外避難が報道さ れていたが,当該者は翌日には口永良部に帰島しており,屋久島町の記録では島外避難者はな かったとされた。

島外者の滞在状況について,8月13日は口永良部島夏祭りが予定されており,飲食物などの 準備が完了していたが,台風接近のため,島外者は8月12日の船で屋久島に戻り,居住者の みでの実施となった。8月15日の警戒レベル4以降,8月後半に予定されていた小中学校の校 舎基礎工事も延期となったため,宿泊予約の大量のキャンセルが生じたことから,住民の経済 的な打撃は大きい。「避難準備であったため,営業禁止にはならなかったが,営業自粛となっ たことで,補償制度が利用できなかった。」との発言があった。公的な支援以外の対応策につ いて質問を受け,金融商品¹¹の紹介を行ったところ,現状,限られた地域を対象ではあるが, 今後,広く取り扱われることや地域ごとの内容に強い関心を寄せていた。

ロ永良部島では山海留学として児童・生徒の受け入れを行っていたが,受け入れ宅では「自 分たち家族だけなら噴火が来れば非常持ち出し袋を持って逃げればよいが,預かっている子供 たちのことは,やはり気持ちの負担が大きい。」とのことであった。結果的に,児童について は受け入れを停止し,生徒についは本人の意思を尊重し継続の方針とのことであった。

警戒レベルへの意識として、レベルが4に上げるかいなかの判断が、前田地区(火口から約 2.0~2.5km)に居住者がいるか否かで異なることへの疑問の声があり、仮に居住禁止区域や、 行政主導での移住の可能性についての議論もあった。また、噴火予知が不完全(不確実)な状 況での、レベル運用や、レベルの決め方は補助的な情報に過ぎす、決定論的なものでは無いと の認識のもと、メディアなどで、情報の責任の所在を問うよりも、噴火警戒レベルが、決定論 的な噴火予知に基づいたものではないことこそ、伝えてほしいとの意見があった。

5. 噴火警戒レベル4 (避難準備) での課題

事前の判定基準への追加要素を加味した今回の判断は,活動推移に不確定要素の大きい火山 活動では現実的な運用と考えられる。一方で,今回加味された判断基準内容の妥当性について は,専門家を交えた検証が必要である。

判定を下げる基準として2週間の地震の静穏期間が定められているが,住民負担を軽減する 上では,より短期間での判断の可能性についての検討が望まれる。より短期間の静穏期でのレ ベル引き下げは,頻繁なレベルの上げ下げを行う可能性があがることから,その煩雑さの不利 益についても検討が必要である。

警戒範囲については,前田地区(火口から約2.0~2.5km)と本村地区(火口から約3.0km~) では避難行動の切迫度が実質的に異なるとの判断のもと,前田地区については立ち入り可能な

¹ 損害保険ジャパン日本興亜は、 グループ会社の SOMPO リスケアマネジメントと共同で、 万一,富士山が噴火した場合の周辺の観光事業者やビジネスに生じる被害を補償する初の保険 商品「富士山噴火デリバティブ」を開発し、2016 年 6 月 1 日から発売した。また、東京海上 日動火災保険が神奈川県の箱根山の噴火の際に一定額を支払う金融派生商品(金融デリバティ ブ)の販売を 2016 年 12 月より開始した

がら避難が推奨され,結果,自主避難となった。立ち入り制限が行われない以上,生活の保障 がないことも,2週間の経済負担を住民が負担することとなり,負担が大きかった。これによ る経済被害の課題を住民は指摘した。2週間あるいはそれ以上の自主避難時の支援制度の充実, あるいは、立ち入り規制区域を地区の境界を隔てる2.5kmとし、支援制度を活用することで経 済的な課題が改善できるか否かの検証が望まれる。また、公的支援に限らず、民間の金融商品 の課題である。なお、金融商品については、大規模な観光地を対象とした限られた地域を対象 にした商品であり、定着や、その他の地域を対象とすることについては、今後着目すべきであ る。

また,警戒レベル4特有の課題ではないが,気象状況による複合災害の危険性が表面化した。 番屋ヶ峰が避難場所として計画されていたが,番屋ヶ峰は島内の高台にあり,強風・豪雨時は 居住地域からの移動に危険を伴う。さらに,避難所トイレが屋外にあるために避難後も危険が 伴う。移動については気象状況に応じた判断が必要となるが,施設については至急の改善が望 ましい。

6. おわりに

現状では居住者と訪問者を区別した立ち入り規制は行われていない。今後,立ち入り規制と 経済支援を合わせた新たな制度設計(訪問者の立ち入りが規制された場合の経済支援など)の 検討が考えられる。

気象災害では、2018年7月の西日本豪雨での報告にもあるように(気象庁など)、「避難準備・ 高齢者等避難開始」情報を、対象となる地域住民いかに迅速に周知し・行動に結び付けてもら うかが課題となる一方で、火山噴火においては、「避難準備」の期間が最低でも2週間、それ以 上に長引く可能性があり、かつ、その期間の生活支援制度が整っていないことが本調査で明ら かになった。現在、「南海トラフ沿いの地震観測・評価に基づく防災対応のあり方」について検 討がすすめられており(内閣府資料)、なんらかの異常検知後、発災の有無、発災までの期間が 不確実な点で、同様の課題がある

なお,2018年10月21日に小規模な灰噴火(本村でも降灰確認)以降断続的な活動があり, 12月18日に屋久島でも降灰が確認される規模の噴火が確認されたが,事前の判断基準に基づき,噴火警戒レベルは3に据え置かれている。

謝辞

本研究は,災害の軽減に貢献するための地震火山観測研究計画「火山災害情報およびその伝 達方法のあり方(名古屋大学)」の助成を得て行った。

参考文献

Kuri M., M. Sakamoto, N. Maki (2017) Background of Rapid Evacuation of the 2015 Eruption and Education for Disaster Prevention by Residents on Kuchinoerabujima volcano, Journal of Natural Disaster Science, Volume 38, Number 1, p49-64.

Sakamoto M., M. Kuri, M. Iguchi, N. Maki, T. Ichiko, N. Sekiya, H. Kobayashi (2016) Disaster

Governance in Disaster Management Planning -Analysis of the Evacuation Planning Process for Kuchinoerabujima Volcano Eruption-, Journal of Natural Disaster Science, Volume 37, Number 2, p105-117.

- 気象庁, 口永良部島噴火警戒レベル, https://www.data.jma.go.jp/svd/vois/data/ tokyo/STOCK/activity_info/509.html [2019年1月10日閲覧].
- 気象庁,防災気象情報の伝え方に関する検討会,https://www.jma.go.jp/jma/kishou/shingikai/ kentoukai/H30tsutaekata/H30_tsutaekata_kentoukai.html [2019年1月10日閲覧].
- 内閣府, 南海トラフ沿いの異常な現象への防災対応検討ワーキンググループ,

http://www.bousai.go.jp/jishin/nankai/taio_wg/taio_wg_02.html [2019年1月10日閲覧].

山里平, 舟崎淳, 高木康伸 (2013) 気象庁の火山防災業務, 防災科学技術研究所研究資料, 第 380 号, p9-15.

加振実験と動的解析による石場建て構法の摩擦力の検討*

秋田県立大学 末次 優大、クアドラ カルロス

1. はじめに

日本の文化財木造建築物には社寺建築を中心に伝統構法によるものが数多く存在する。これ は複雑な継手・仕口や貫などにより、粘りで揺れを吸収する柔構造である。

一方,現在の日本国内の戸建て住宅の主流である在来工法(軸組構法)は,一部の接合方法 を受け継いでいるものの,筋交いや補強金物を多用した剛構造になっている。

現行の建築基準法等において、木造に関する規定は概ね在来工法で構成されており、これら を伝統構法に援用し耐震性能を評価することは不可能である。しかしながら、平成20年度には 国土交通省の事業として「伝統的構法の設計法作成及び性能検証実験」検討委員会が設立され、 伝統構法に関する実験・検討も行われるようになってきた。

本研究では伝統構法のうち,柱脚を基礎に緊結しない石場建て(礎石建て)に着目し,柱脚の 滑り挙動について検討する。本報では,縮小模型を用いた加振実験,およびその結果をもとに 摩擦力を考慮したモデルの作成・解析を行い,比較を通して解析結果の妥当性を考察した。

2. 加振実験

縮小模型を振動台に設置し、1100 Gal のパルス波を入力して加振方向の加速度を計3回計測 した。なお、サンプリング周波数は200 Hz とした。

図1に試験体の概略図,表1に試験体の諸元を示す。試験体長辺梁の中央に加速度計 a1, a2, その直下付近の振動台上に a3, a4 を設置した。礎石はコンクリートブロックで代用した。

図1. 試験体概略図

 表1. 試験体諸元

 材料
 スギ

 長辺×短辺
 1175×910 mm

 高さ
 370 mm

 質量
 42.05 kg

加振実験にあたり,試験体 EW 方向の固有振動数を求めるため,常時微動観測を行った。試験体上a1,a2,および振動台上の計3か所に微動測定器を設置し,600秒間計測した。このうち 波形が安定している40.96秒間を選択して高速フーリエ変換を行い,フーリエスペクトルから a1,a2の伝達関数を算出した(図2)。卓越振動数は34.0 Hz で,これが試験体 EW 方向の固有 振動数と推定できる。

各観測点の加速度の一部を図2に示す。なお、グラフ中の点と数字は、滑り出し加速度、摩 擦時の最小加速度・最大加速度を示している。滑り出し加速度は、試験体上と振動台上の加加 速度に顕著な差が発生する点の加速度とした。

衣 II 用 7 田 C 加速度 C 干的加速度					
滑り出し加速度 (cm/s²)			平均加速度 (cm/s^2) $(max q_i + min q_i)/2$		
. 1	. 0	TT +/-	1	. 0	JT +/-
al	a2	平均	al	a2	平均
662.55	654.26	658.41	686.22	703.09	694.65
700.00	700 01	710 05	700 41	070 07	COO E 4
109.88	722.61	716.25	100.41	678.67	689.54
785.59	722.61	754.10	643.62	649.38	646.50
		709.58			676.90
	滑り出し a1 662.55 709.88 785.59	ペイ・ボット 滑り出し加速度 a1 a2 662.55 654.26 709.88 722.61 785.59 722.61	済り出し加速度 (cm/s ²) a1 a2 平均 662.55 654.26 658.41 709.88 722.61 716.25 785.59 722.61 754.10 709.58	滑り出し加速度 平均加速 (cm/s ²) 平均加速 (max a _i a1 a2 平均 a1 662.55 654.26 658.41 686.22 709.88 722.61 716.25 700.41 785.59 722.61 754.10 643.62 709.58 709.58 709.58	滑り出し加速度 (cm/s ²) 平均加速度 平均加速度 (cm/ $(max a_i + min a_i))$ a1 a2 平均 a1 a2 662.55 654.26 658.41 686.22 703.09 709.88 722.61 716.25 700.41 678.67 785.59 722.61 754.10 643.62 649.38 709.58 709.58 709.58 649.38

表1. 滑り出し加速度と平均加速度

最小加速度と最大加速度の平均値を平均加速度と定義し、各回の滑り出し加速度と平均加速 度を表1に示す。滑り出し加速度は判断が難しく各回のばらつきが大きいため、ばらつきの小 さい平均加速度を用いると、試験体の摩擦係数は $\mu = a/g = 676.90/980.665 = 0.690$ と推測さ れる。

3. 動的解析

構造解析ソフト「SAP2000」を用い,試験体のモデル化および時刻歴応答解析を行った。入力 波には加振実験と同じものを使用した。モデルは図4に示す。

解析モデルの使用材料は、柱・梁などに用いる Wood, 天板に用いる Plywood とし、表3の通り定義した。柱脚部はすべて摩擦係数の等しい滑り支承と見なし、Friction Isolator Property を適用した。その諸元を表4に示す。水平方向の剛性は、加振実験試験体の質量および固有振動数から求め、鉛直方向の有効剛性は剛と見なせる十分大きい値に設定した。また、摩擦面を水平とするため、曲面半径は無限大に設定した。

図4. 解析モデル

表 2. 材料定義

Property	Wood	Plywood
Weight per Unit Volume ($\times 10^{-6}$ kN/cm ³)	3.80	6.00
Modulus of Elasticity (kN/cm²)	750	1050
Poisson	0.4	0.4

表 3. Friction Isolato	r Property 諸元
Stiffness (X, Y)	4.8 kN/cm
Friction Coefficient; μ	0.690, 0.552
Effective Stiffness (Z)	100000 kN/cm
Effective Damping	0
Net Pendulum Radius	∞

アイソレータの摩擦係数は,実験結果から求めた 0.690 およびその 80%である 0.552 の 2 通り を設定し,固有振動数はそれぞれ,34.3 Hz,32.1 Hz となったため,作成したモデルは妥当で あると判断した。

加振実験1回目,2回目,3回目の入力波を入力したときの柱上部の加速度を図5に示す。

 μ =0.690 での解析結果は、滑り出し加速度が実験結果とほぼ一致するが、摩擦が発生している時間が実験より 0.05~0.06 秒ほど短く、動摩擦係数が実際よりも大きくなっていると考えられる。

 μ =0.552 での解析結果は、滑り出し加速度が実験結果より小さいが、摩擦が発生している時間は μ =0.690 の場合より長く、実験結果より短い結果になった。

図6は,摩擦力-変位(アイソレータの力-変位)関係を示している。どちらの摩擦係数の場合 も,柱A1・A2 側と柱B1・B2 側のせん断力に差異があり,軸力に偏りが発生していることが確 認できる。

図6. 摩擦力-変位 関係

4. まとめ

石場建てについて加振実験および解析の結果を比較し,滑り出しの加速度は概ね一致するこ とを確認した。しかし,摩擦が発生している時間については,小さい摩擦係数を用いても大き な差異が認められるため,今後さらなる検討が必要である。また柱脚の滑り挙動について,摩 擦力のほか,摩擦時の速度・滑り量を含めた検討を行っていく。さらに,礎石に石材を使用し た場合の摩擦係数の検討も同様に行う。

参考文献

- 1) 齋藤悠介:微動測定と加振実験による神社建築の振動特性に関する検討,秋田県立大学卒業 論文,2015.1
- 2)上原勇真:石場建て構造の動的解析と加振実験の摩擦力の検討,秋田県立大学卒業論文, 2018.1

地殻浅部での低周波地震活動*

弘前大学理工学研究科 小菅 正裕

1. はじめに

震源から放射される地震波の波長の上限は断層の大きさに関係し,規模が小さい微小地震は波 長が長い,すなわち低周波の波を放射することはできない。しかし例外的に,通常の微小地震よ りも有意に低い数 Hz の波が卓越する地震があり,これを低周波微小地震と呼ぶ(以下,低周波地 震と略記する)。低周波地震は発生する深さにも特徴がある。図1は,東北日本で発生した通常の 地震と低周波地震の深さ分布を示したものである。通常の地震の深さの下限は15 km 程度である。 これは,それ以深では高温で物質が軟らかくなり,脆性破壊を起こすことができなくなるためと 解釈されている。一方,低周波地震はその多くが20 km よりも深部で発生するため,脆性破壊と は異なるメカニズムで発生する地震と考えられている。

気象庁では 1998 年以降, 震源カタログに低周波地震であることを示すフラグ(印)を付けている。 その際, 火山周辺の地殻浅部においてマグマだまりの膨張・収縮やマグマの移動に伴って発生す

る低周波地震と区別するために,フラグ付けの 対象とする地震はおよそ 10 km 以深のものとし, 「深部低周波地震」と呼んでいる。図1の右側の 深さ分布は,深部低周波地震のフラグが付いた地 震の分布である。これを見ると,通常の地震が発 生する地殻浅部において発生する低周波地震が 全まする地殻浅部において発生する低周波地震が 全まするのはなぜかということは, 地殻内での断層運動の発生条件は何かというこ とと直接関係し,地震学上極めて重要な問題を含 んでいる。それを考えるためには地殻浅部での低 周波地震の活動状況を知ることが必要であるが, 浅部の低周波地震に対してはフラグ付けがなさ れていないため,活動の実態は不明である。

そこで本研究では、地殻浅部において通常の地 震と低周波地震の両方が発生していることが知 られている地域において、地震波の周波数成分の 割合を示す Frequency Index (以下, FI 値と述べる) を用いて地震の分類を行い、地殻浅部における 低周波地震の活動状況を把握することを目的と する。

*Seismic activity of shallow low-frequency earthquakes by Masahiro Kosuga

2. 方法とデータ

FI 値は $FI = \log_{10} \left(\overline{A}_H / \overline{A}_L \right)$ で定義される [Buurman and West (2010)]。ここで $\overline{A}_H \ge \overline{A}_L$ は高周 波および低周波帯域における平均スペクトル振幅である。両帯域でのスペクトル振幅が等しけれ ば FI 値は 0, 低周波のスペクトル振幅の方が大きければマイナスの値をとる。本研究では,高周 波帯域は 10–20 Hz,低周波帯域は 2–4 Hz を用いた。高周波帯域は通常の微小地震において卓越す る周波数,低周波帯域は東北日本の低周波地震において卓越する周波数に対応する。

FI 値を求めた例を図2に示す。本研究では、まず各観測点のS波2成分の平均FI 値を求めた。 その際、上記の2つの帯域でのS波のスペクトル振幅が、P波到達前のノイズのスペクトル振幅 の2倍以上であることを条件にした。次に、FI 値の観測点平均値を求め、それを各地震のFI 値と した。

FI 値を用いた地震の分類は, 八甲田山と北海道函館付近の地震を対象に行なった。波形データは, 防災科学技術研究所 Hi-net のホームページからダウンロードしたイベント波形データを用いた。S 波の到達時刻は気象庁一元化震源の験測値を用いた。

3. FI 値の頻度分布

高周波地震も多数発生している八甲田山周辺域について求めた FI 値の頻度分布を図3に示す。 FI 値は,+0.2 付近に大きなモード,-1.0 付近に幅が広くて小さなモードを持つ, bimodal な分布を

図2 八甲田山の深部低周波地震について FI値を求めた例。まず,水平2成分それ ぞれについて,S波部分の1.28秒間のフー リエ振幅スペクトルを求め,2-4 Hz(図の Lの帯域)と10-20 Hz(Hの帯域)での平 均スペクトル振幅比の常用対数をFI値と する。次に,2成分のFI値の平均を観測 点のFI値とする。下段の破線はP波到達 前のノイズのスペクトルで,S波とノイズ のスペクトル比がしきい値を下回る場合は FI値を求めない。S波とノイズの時間ウィ ンドウは波形の下に示している。 している。前者が高周波,後者が低周波地震に対応する。図3の下に示すようなカラースケール を用いると,地震の周波数成分を「高周波」「低周波」の二元論的分類ではなく,連続量として評 価してその空間分布を見ることができる。

4. 八甲田山周辺の低周波地震の空間分布

2002年~2018年の期間に八甲田山周辺で発生 した地震の FI 値の空間分布を図 4(a) に示す。赤 色で表される低周波地震は,八甲田大岳付近の深 さ 5 km 以浅に円柱状に,また,大岳の東の深さ 20 km 以深に小さな 2 つのクラスターを形成して 分布している。八甲田山では 2013年 2 月以降,大 岳付近を震源とする地震活動が活発になり,GNSS による観測では膨張性の地殻変動が観測された。 また,大岳山頂付近を震源とする低周波地震も発 生した [仙台管区気象台火山監視・情報センター (2013)] が,気象庁一元化震源カタログでは低周

図3 八甲田山周辺で発生した地震のFI 値の頻度分布。図のカラースケールに 従って分類した震源分布を図4に示す。

図4 (a) 八甲田山周辺で発生した地震の FI 値の分布。カラースケールは図3に示す。震源の丸の 大きさはマグニチュードを表す。赤い三角印は八甲田大岳の位置を示す。(b) 気象庁一元化震源カ タログで低周波地震のフラグが付けられている地震の震源分布。丸の色は深さを表す。

波地震のフラグは付けられていない(図4(b))ので,FI値を用いることで,八甲田山周辺での低 周波地震の活動状況を客観的に示すことができるようになったと言える。なお,(a)(b)ともに気象 庁一元化震源カタログによる位置を用いているが,対応しない地震があるのは,ノイズレベルが 高くてFI値を求めることができなかった地震はプロットされていないためである。

八甲田山周辺で発生した地震の FI 値の時空間分布を図 5 に示す。八甲田大岳付近での低周波地 震活動が 2013 年から始まり 2014 年前半まで継続したことと,深さ 20 km 以深での低周波地震は 大岳付近での地震活動が活発になった後で発生し始め,活動はその後も継続していることがわか る。また,2006 年 4 月に大岳付近の浅部で低周波地震が発生したこと(図 5 の矢印)もわかる。 このように,FI 値を用いることで,地震活動図に地震波の周波数成分の情報を盛り込むことがで きる。

5. 函館周辺の低周波地震の空間分布

函館付近で発生した地震についても FI 値を求め,その空間分布について検討した。ただし,対

図 5 八甲田山周辺で発生した地震の FI 値の時空間変化。丸の大きさはマグニチュード,丸の色 は FI 値を表す。深さの時間変化図の矢印は低周波地震の発生を表す。

象とした地震は,活火山である恵山の南西の汐首岬付近の低周波地震と,2018年10月から11月 にかけて函館市石崎町において臨時地震観測を行なった期間に発生した地震であるので,空間的 にも時間的にも非一様である。FI値の空間分布を図6(a)に示す。低周波地震は,汐首岬付近の深 さ20~32 kmに大きなクラスター,それよりも10 km 程度西方の石崎地区の深さ5~20 kmに小 さなクラスターを形成している。気象庁一元化震源カタログによる低周波地震の分布域(図6(b)) で発生した地震は,FI値からでも低周波と判定されている。石崎地区では,高周波地震と低周波 地震が隣接して分布していて,東部は低周波,西部は高周波と棲み分けているように見える。

6. 議論

FI 値を用いた地震の分類は、しきい値を決めれば客観的に行うことができ、験測者の主観に左 右されることがないので、地震活動の検討には有用なツールとなる。2013 年から 2014 年にかけて、 青森県から北海道渡島半島南端部にかけての領域に地震観測網 AS-net が整備された。そのデータ の解析から、函館市石崎付近の深さ 5 km 前後において、低周波地震が発生していることが確認さ れた [野口・他 (2018)]。2018 年 10 月から 11 月にかけて実施した臨時地震観測中に発生した地震 の FI 値からも、同程度の深さで低周波地震が発生していることが確認できた。このような地殻浅 部での低周波地震がなぜ発生するかの解明は次の課題になるが、高周波地震と低周波地震が隣接 して分布していることは、それらを含むクラスター領域が特異な地下構造をしているというより は、個々の地震発生様式の違いを反映していることを示唆する。このような検討を各地で進める

図6 (a) 函館周辺で発生した地震の FI 値の分布。カラースケールは図3 に示す。震源の丸の大き さはマグニチュードを表す。赤い三角印は活火山の恵山の位置を示す。(b) 気象庁一元化震源カタ ログで低周波地震のフラグが付けられている地震の震源分布。丸の色は深さを表す。

上で、FI 値の時空間分布は基本的なデータとなる。

FI 値を用いた先行研究としては以下のような例がある。Buurman and West (2010) は、アラスカ の Augustine 火山の 2006 年の噴火活動の期間に FI 値がどのような時空間変動をしたのかを調べ、 マグマの上昇との関係を議論した。Hotovec-Ellis et al. (2018) は、カリフォルニアの Mammoth 山の 地殻中深部の地震を FI 値を用いて分類し、低周波・高周波地震の震源分布からマグマの存在領域 を推定し、高周波地震の震源移動から流体の移動を推測した。このように、FI 値を通して地震活 動を捉えることは、高周波・低周波地震の発生メカニズムを考える上で有用である。

7. おわりに

本研究では,八甲田山と北海道の函館周辺で発生した地震について,波形記録から FI 値を算出 して地震の分類を行い,低周波地震と高周波地震が空間的に棲み分けていることを明らかにした。 FI 値は簡便に求めることができて地震の分類が客観的に行えるので,地震活動解析には有効なツー ルであることも示した。

今後は、地殻浅部の高周波地震から地殻下部の低周波地震まで連続した震源分布を示す北海道の雌阿寒岳、深さ 10 km 前後に低周波地震と高周波地震が分布している岩手山や北海道の羊蹄山地域などでの解析を進める。

文献

- Buurman, H. and West, M.E., 2010, Seismic precursors to volcanic explosions during the 2006 eruption of Augustine Volcano, chapter 2 of Power, J.A., Coombs, M.L., and Freymueller, J.T., eds., The 2006 eruption of Augustine Volcano, Alaska: U.S. Geological Survey Professional Paper 1769, 41-57.
- Hotovec-Ellis, A. J., D. R. Shelly, D. P. Hill, A. M. Pitt, P. B. Dawson, and B. A. Chouet, 2018, Deep fluid pathways beneath Mammoth Mountain, California, illuminated by migrating earthquake swarms. Sci. Adv., 4, eaat5258.
- 野口科子・関根秀太郎・澤田義博・笠原敬司・佐々木俊二・田澤芳博・矢島浩・阿部信太郎・石 田貴美子,2018,高密度観測網 AS-net で捉えられた東北地方北部〜北海道南西部の低周波イベ ントの分布と特徴,日本地震学会2018年度秋季大会講演予稿集.
- 仙台管区気象台火山監視・情報センター,2013,八甲田山の火山活動について,火山噴火予知連 絡会会報,116,22–35.

謝辞

本研究では、気象庁一元化震源要素と験測値、及び Hi-net と気象庁観測点の波形データを使用 した。弘前大学理工学研究科の前田拓人准教授と弘前大学理工学部地球環境学科の成田伊織・松 野有希の両氏には、函館周辺での臨時観測とデータ整理にご協力いただいた。以上の関係機関と 方々に厚く御礼申し上げます。
福島県の広帯域リニアアレイで観測された

常時微動の地震波干渉法解析―南北測線における解析―*

岩手大学工学部 起田賢親

岩手大学理工学部 山本英和 齊藤剛

1.はじめに

我々は福島県の直下で発生するスープラスラブ地震(例えば,Uchida et al, 2010)と呼ばれる地 震の発生メカニズムを解明するため、2012 年度から(公財)地震予知総合研究振興会で設置され た広帯域地震計リニアアレイにより 2014 年まで東西測線(10 台)の地震・微動観測を行って きた。佐藤ほか(2017)では東西測線の10点の観測点に対し、1カ月重合相互相関関数を計算し、 群速度の算定を行った。また、Takagi et al.(2014)の手法を用いて表面波の分離を行った結果、 東西測線の観測結果では表面波が卓越していると考えられた。さらにリニアアレイの組み合わ せ位置の近い観測点間の群速度と付近のHi-netの観測記録で得られる群速度の比較を行ったと ころ、値が同等になることからリニア記録に地震波干渉法解析を適用し、浅部の構造を推定す る手法が有効であると判断された。

今回は地震予知総合研究振興会により新たに設置され,2014 年から 2015 年までの約 6 カ月観 測された 4 点の南北測線の解析を行った。南北測線に加え,付近の Hi-net、F-net の観測記録も 用いて 3 成分相互相関関数を計算し,群速度の算定を行った。また,Takagi et al.(2014)の手法 を用いて表面波の分離を行い,Nishida et al.(2008)の速度構造モデルから計算したレイリー波, ラブ波との比較を行い,得られた結果の妥当性を検討した。

2. 広域リニアアレイ観測

南北測線は地震予知総合研究振興会によ り設置された4点とF-net 広野(N.HROF)の 計5点の測線とし,広野から南に向かって 順に番号を振った。センサーは固有周期 120秒3成分速度計(Trillium Compact)を使 用し,収録にはデータロガーLS8800を使用 した。サンプリング周波数100Hzで観測点 ごと独立に連続測定された。広野のほかに 参照点としてF-net 八溝(N.YMZF)とHi-net いわき西(N.IWWH)を使用した。図1に今 回使用した観測点位置とHi-net, F-net の位 置を示す。

*Seismic interferometry analysis of microtrenors observed in a lineae array with broadband seismometers in Fukushima Prefecture by K. Okita, H. Yamamoto and T. Saito

3.相互相関関数の算定

観測データや取得した Hi-net, F-net の観測記録は 100Hz でサンプリングされているが, デー タ量が膨大であるため計算時間を短縮するため波形データを 20Hz にリサンプリングした。リ

サンプリングを行ったデータに対し, 時間領域における巨大地震や非定常 雑音による振幅の乱れを取り除くた め1秒の時間規格化,同時に二値化 を行い、さらに周波数領域で規格化 するためにホワイトニングを前処理 として行った(例えば, Bensen et al., 2007)。観測記録は振興会の地震計に よるもの, Hi-net, F-netの3つがあ るが今回機器補正は行わなかった。 前処理を行った波形に対しFFT処理 によりクロススペクトルを算出し, 逆フーリエ変換により相互相関関数 を計算した。相互相関関数計算には 日野(2010)のスペクトル解析のプ ログラムを参考にした。基本区間15 分の相互相関関数を4個平均して一 時間重合相互相関関数として算出し た。機器の不具合やバッテリー交換 等で記録が数分から数時間途絶える 時間帯があった日付は除いたうえで 1 カ月とした。重合する期間が長い ほどノイズが小さく,特徴的な位相 を確認することができる為,使用可 能な6カ月の重合を行った。図2に 比較のため重合期間を1時間,1日, 10日,1カ月,6カ月とした相互相 関関数を示す。図からは期間が長い ほど特徴的な位相が見えることを確 認できた。

vertical 方向, transverse 方向

Vertical(ZZ)相関関数と Transverse(TT)相関関数の比較を行った。図 3 に NS-1 から各測点へ計算した相関関数 ZZ, TT を示す。遅れ時間を比較すると TT の方がわずかに速く検出されていることが分かる。

4. 群速度の算定

得られた相互相関関数に対し て Dziewonski et al.(1969) のマ ルチプルフィルタ解析を行い, 群速度の算定を行った。相互 相関関数に狭帯域のバンドパ スフィルタをかけ、波形の包 絡線の最大値から遅れ時間を 算定し, 地震計間距離を時間 遅れで除すことで周波数ごと の群速度を求めた。同時にシ グナルをノイズで除すことに より SN 比を周期の関数とし て算出し, 群速度の評価に用 いた。詳しい計算方法につい ては佐藤ほか(2017)に従う。 今回はSN比10以上を基準と して群速度の信頼性を評価し た。

図4に Vertical 方向の6カ 月重合相互相関関数より算定 した群速度とSN 比を示す。 今回は機器補正を行っていな いため、F-net である NS-1と 振興会の地震計を使用したほ かの点とではフィルタリング がことなる可能性が考えられ る。そのためか比較的距離が 近い1-2の群速度はプラス方 向とマイナス方向でわずかに 異なっていた。2-3 での群速 度は SN 比がピークをとる周

(a)は群速度, (b)は SN 比を示す

波数 0.5Hz 程度以上からはプラス方向とマイナス方向でほぼ一致し,また約 2.2km/s で一定の 値をとっていた。周波数によって速度が変化していないのでここでは実体波である可能性が考 えられる。NS-5 との組み合わせでは分散曲線の連続性が低いことが確認できた一方で,NS-5 と最も近い組み合わせである 4-5 は他と比較して連続性が高く,群速度は約 1km/s まで低下し ていた。これらの結果から NS-2, NS-3, NS-4 付近の地下構造は近いものであると考えられる。 また,NS-5 は分散曲線の連続性が低い中,NS-4 との組み合わせで連続的に群速度が低下する ことから, NS-4 と NS-5 の間で地下構造が変化していると考えられる。実際に NS-5 付近は平 野部であり, 浅部構造は他点より遅いと思われる。

5. 表面波の分離

上記の解析では得られた相互相関関数をそのまま計算に用いたため、群速度には実体波と表面波が混在していると考えられる。そこで Takagi et al.(2014)の手法によって表面波の分離を行

(a)は群速度, (b)は SN 比を示す

った。レイリー波の楕円運動と は対照的に P 波は直進粒子運動 を有する。Takagi et al.(2014)で は Vertical-Radial 相互相関関数 (ZR), Radial-Vertical 相互相関関 数(RZ)を求め、和をとることで レイリー波の寄与を相殺して P 波の寄与のみを保持し、対照的 にZR と RZ の差をとることで P 波の寄与を相殺してレイリー波 の寄与のみを保持することで分 離を行う。

分離を行ったレイリー波の比 較対象として,Nishida et al.(2008)の速度構造モデルを使 用した。モデルはHi-netの傾斜 計で測定された常時微動の地震 波干渉解析から日本全国のS波 速度構造が求められており,緯 度経度0.1°間隔,深さ60km ま で層厚1kmごとに物性値が求め られている。今回は観測点周辺 で,物性値が求められている4 点を用いて線形補完を行い,観 測点直下の構造とした。

図5に分離を行った表面波の 群速度とSN比, Nishida モデル より計算したレイリー波群速度 を示す。全体的にNishida モデ ルより遅い結果となった。

Nishida モデルは地表から 1km ごとの構造を求めているので、実際の浅部の速度構造より速く なっていることが原因として考えられる。今後実際の浅部構造やそれに準ずる構造をモデルに 取り入れることで、算定結果との一致が望めると考えられる。2-3 の群速度を分離前と比較す ると周波数によって変化して いるように見える。このこと から分離によって表面波を卓 越させることが出来ていると 判断できる。また, SN 比の 向上も確認できた。4-5 の群 速度は SN 比が高いプラス方 向を見ると,やはり約 1.2km/s 程度の他と比べて遅い値を示 している。

6. 参照点の使用

参照点として F-net 八溝 (N.YMZF)と Hi-net いわき西 (N.IWWH)を使用し、1カ月の 重合相互相関を用いて群速度, SN 比を算定した(例えば, Yamanaka et al., 2015)。 図 6 にいわき西と南北測線との相 互相関より算定した群速度と SN 比を示す。いわき西は測 線より内陸に位置しているた めマイナス方向で SN 比が高 くなっている。群速度を比較 すると,図では省略した NS-3 を含め, NS-1 から NS-4 まで は速度構造が似ていると判断 できる。NS-5 に関しては,参 照点を用いることでよりはっ きりと浅部の遅い構造を相対 的に確認できたと言える。

7.まとめ

福島県東部で南北方向のリ ニアアレイ観測に地震波干渉 法解析を適用し群速度を求め, Nishida モデルとの比較を行

った。また,参照点を用いて各測点での速度構造の比較を行った。Nishida モデルとの比較では

観測結果が全体的に Nishida モデルより遅い結果となった。原因として Nishida モデルでは表さ れていない表層の影響が考えられ、浅部構造との比較を行ううえでは、新たに表層の構造を取 り入れる必要があると思われる。参照点を用いた比較では NS-1 から NS-4 が近い速度構造を持 つことが示唆され、NS-5 付近平野部の遅い構造を表すことができたと思われる。しかし、参照 点は1カ月分のデータで解析を行ったため、今回より遠方の参照点を使用する場合にはさらに 長期間のデータが必要であると判断される。

謝辞

(公財) 地震予知総合研究振興会からデータを提供していただいた。(国研)防災科学技術研 究所から F-net, Hi-net のデータを提供していただいた。一部の図面の作成には GMT(Wessel and Smith, 1998)を使用した。記して謝意を表する。

参考文献

- Bensen, G.D., M.H. Ritzwoller, M.P. Barmin, A.L. Levshin, F. Lin, M. P. Moschetti, N. M. Shapiro and Y. Yang(2007), Processing seismic ambient noise data to obtain reliable broad-band surface wave dispersion measurements, Geophys. J. Int., 169, 1239-1260.
- Dziewonski, A., Bloch, and M. Landisman(1969), A technique for the analysis of transient seismic signals, Bull. Seism. Soc. Am., 59, 427-444
- 日野幹夫(2010),スペクトル解析新装版,朝倉書店, pp.300.
- Nishida, K., H. Kawakatsu, and K. Obara, (2008) : Threedimensional crustal S wave velocity structure in Japan using microseismic data recorded by Hi-net tiltmeters, J. Geophys. Res., 113, B10302, doi: 10. 1029/2007jb 005395.
- 佐藤史佳,山本英和,齊藤剛(2017):福島県の広帯域リニアアレイで観測された常時微動の地 震波干渉法解析(その2),東北地域災害科学研究 第53巻, pp.163-168.
- Takagi R., Nakahara H., Kono T., and Okada T.(2014), Separating body and Rayleigh waves with cross terms of the cross-correlation tensor of ambient noise, J. Geophys. Res., 10.1002/2013JB010824.
- Wessel, P. and W. H. F. Smith(1998), New, improved version of the Generic Mapping Tools released, EOS Trans. AGU, 79, 579.
- Yamanaka, H., K. Kato, K. Chimoto and S. Tsuno (2015) : Estimation of surface-wave phase velocity from microtremor observation using an array with a reference station, Exploration Geophysics, 46, pp. 267-275.

岩手大学で観測された短周期微動の地震波干渉法解析による 群速度の推定*

岩手大学工学部 佐々木恵太

岩手大学理工学部 山本英和 齊藤剛

1. はじめに

地震時の揺れやすさを評価するために,地盤のS波速度構造を把握することが重要である。これ らの探査には、微動アレイ探査がよく用いられる。微動アレイ探査とは、表面波の位相速度にみら れる分散性(位相速度が周波数によって変化するという性質)を利用して、主に地下のS波速度構造 を推定する手法(例えば Okada, 2003)である。しかし,この手法では,逆解析等で解が 1 つに求ま らない可能性がある。よって、より多くの地下構造の情報があることが望ましい。そこで、最近で は、別の手法である地震波干渉法が提案されている。これは、2 観測点における波動場の相互相関 関数を長時間重合することによって、1 点を震源とし、もう1 点を観測点とするグリーン関数(イ ンパルス応答)を求める手法である(中原 2015)。この地震波干渉法を用いて, 群速度の分散曲線を 得ることで,地盤のS波速度構造の情報量を増やすことを試みられ始めている。岩手大学内では, 過去に、山本ほか(2017)で、岩手大学内のグラウンドにおいて 100m のリニアアレイを用いて微動 観測及び解析を行った。より深部の情報を得るためには,100mより長い測線間隔が必要とされる。 かつ、より長時間の微動データの重合が必要である可能性がある。そこで、本研究では、数百 m 離して微動計を配置し、1ヶ月程度という比較的長い時間の微動観測を実施し、解析をした。

2. 微動観測

図1に岩手大学内での観測地点を示す。数百m間隔 で3成分微動計を5台設置し, No.1~No.5 とした。使 用した微動計はレナーツ・エレクトロニクス社製の固 有周期 5 秒三成分速度計 Lennartz LE-3D/5s である。デ ータロガーは、白山工業株式会社のLS-8800を用いた。 サンプリング周波数は 100Hz とした。本観測は 2018 年8月8日から2018年10月3日の約2ヶ月実施した。 解析はデータロガーに不具合が生じた以外の,のべ33 日分を使用した。Lennartz LE-3D/5s の場合, ch1 が UD 方向, ch2 が NS 方向, ch3 が EW 方向となる。

図2に8月8日2時0分から2時59分に観測された 3成分加速度波形を示した。上から下に No.1, No.2, No.3, No.4, No.5 と並んでいる。また, No.3, No.4 近くを通る道路は交通量が多く, ノイジー

*Estimation of group velocity by seismic interferometry analysis of short period microtremors observed at Iwate University by K.Sasaki, H.Yamamoto and T.Saito

な場所であった。また、図3に図2と同時刻で、それぞれの観測点のch1, ch2, ch3のスペクトル 波形とH/V スペクトル比を示した。5Hz以上の高周波帯やノイジーな場所である No.3, No.4 に関 しては、多少のずれが確認されたが、2~4Hz 付近の低周波帯では形状がそろっていることが確認 された。

図2 観測された3成分加速度波形 (8月8日2時0分から2時59分)

3. 重合相互相関解析

基本解析区間を 81.92 秒とし, FFT によるスペクト ル解析により相互相関関数を計算する。EW, NS 成分 から, radial, transverse 成分を座標回転し, Bensen et al. (2007)の解析方法に基づき, 観測された微動に対して周 波数規格化,二値化をおこなう。radial, transverse, UD 成分に対して相互相関関数を計算し,重合した。図 4 に全組み合わせの相互相関関数を距離ごとに示す。今 回の観測から得られた重合相互相関のみでは,波動の

図4 距離ごとの全組み合わせ相互相関関数

伝播が確認しにくいため、桃色の線で山本ほか(2017)で得られた重合相互相関を重ね合わせた。そ れぞれの方向で特徴的な位相のラグタイムを比べてみると、約 350m の距離で radial, UD 方向では 約 1.3 秒であるが、transverse 方向では約 2.0 秒とラグタイムが長いことが分かる。したがって、 transverse 方向の伝播速度が遅いことが予想される。また、今回は、33 日間のものを重合し、群速 度の推定を行った。

4. 群速度の推定

Dziewonski et al. (1969)のマルチプルフィルター解析を行い,群速度の推定を行った。まず,No.2 と No.5 の重合相互相関から算定された SN 比を図 5 に示す。SN 比とは,狭帯域フィルタ波形の包 絡線の最大値をラグが十分大きい平均自乗振幅で除したものである。つまり,SN 比が高いと信頼 性が高いといえる。赤の線が plus で,本研究の正の方向であり,黄緑の線が minus で,負の方向で ある。次に,観測点 No.2 と No.5 の重合相互相関から推定された群速度を図 6 に示す。正負のばら つきがみられることから,SN 比が低いデータも混ざっており,信頼性の低いデータが含まれてい る可能性が考えられる。これらを踏まえ,SN 比が 10 以上のものを抽出した上で,既存モデルから 計算した群速度や山本ほか(2017)から得られた観測群速度との比較を行った。

図5 観測点 No.2 と No.5 の重合相互相関から算定された SN 比

図6 観測点 No.2 と No.5 の重合相互相関から推定された群速度

5. 既存モデルから計算した群速度や山本ほか(2017)から得られた観測群速度との比較

山本(2000)による S 波速度構造と、このモデルから計算した群速度を図 7 に示す。また、図 8 に 山本ほか(2017)のリニアアレイ観測から得られた観測群速度を示す。図 8 は、佐藤(2016)論文を参 考にし、SN 比が 10 以上のものを抽出した群速度である。これら図 7、図 8 と今回の観測結果から 得られた群速度の SN 比が 10 以上のものを重ね合わせたものが図 9 である。過去の計算群速度や 観測群速度と比較した結果、まず、各成分によって、群速度が異なっていることがわかった。そし て、今回の観測は観測点間距離が比較的長いため、3~4Hz 程度の低い周波数帯まで群速度が得ら れていた。また、transverse 方向は、今回の観測群速度、山本ほか(2017)から得られた観測群速度と 既存モデルから計算した群速度がほぼ一致した。これらを踏まえて、山本ほか(2000)の S 波速度構 造を今回の観測結果を満足できるように修正する。

図7山本(2000)によるS波速度モデルとモデルから計算した群速度

図 8 山本ほか(2017)から得られた観測群速度(SN≧10)

図9計算群速度と観測群速度(SN≧10)の比較 青の直線は山本(2000)での既存モデルから計算した群速度 赤・黄緑は今回の観測群速度 桃・水色は山本ほか(2017)の観測群速度

6. 従来の岩手大学内におけるS波速度モデルの修正

図 10 に修正前の S 波速度構造と修正後の S 波速度構造を示す。また,図 11 に今回の観測群速度 と山本ほか(2017)のから得られた観測群速度に修正前の計算群速度と修正後の計算群速度を重ねた ものを示す。Transverse 成分は観測群速度と計算群速度がほぼ一致したが,Rayliegh 波は radial 成 分,UD 成分の両方に発生するので,観測群速度と計算群速度が完全には一致しない結果となった。

図 11 観測群速度(SN ≥ 10)に修正前の計算群速度(青線)と修正後の計算群速度(赤線)を重ね合わせたもの

7. 考察とまとめ

重合相互相関解析では、波動の伝播を確認することができた。また、山本ほか(2017)の岩手大学 内グラウンドでの微動観測では、交通振動を考慮しなくても良い静かなグラウンドで行っていたた め、微動計設置の際、交通振動を考慮せずに設置をした。今回得られた解析結果から、約1ヶ月も の長時間の観測であると交通振動も考慮しなくてはいけないことが分かった。さらによい結果を得 るためには、相互相関関数を出す際に時間規格化をかけるなどが考えられる。

群速度の推定では、例として No.2 と No.5 のペアで比較した。山本ほか(2017)より比較的長い測 線間隔にしたことで、3~4Hz 付近の低周波帯において、今まで得られていなかった群速度を得る ことができた。つまり、距離に応じた群速度が求められることがわかった。今後は、どのくらいの 深度を探査したいかによって、測線の長さを考え、観測を行うことが求められる。

また, transverse 方向では, ピークの SN 比が 50 程度であり, 既存モデルから計算した群速度や 山本ほか(2017)での観測群速度との比較でも分かるように正しい群速度の推定ができたと考える。 一方で, radial 方向及び UD 方向では正負でばらつきが大きい結果となった。その原因として, 実 体波が混在している可能性が考えられる。Takagi et al. (2014)などを応用して, 表面波と実体波を分 離させ, 精度の高い解析を試みる必要がある。

従来のS波速度モデルの修正では、今回の観測結果に合わせるようにS波速度構造を修正した。 今後は、精度向上のため、遺伝的アルゴリズム逆解析等を用いることも有効であると考えられる。

参考文献

- Bensen, G.D., M.H. Ritzwoller, M.P. Barmin, A.L. Levshin, F. Lin, M.P. Moschetti, (2007), Processing seismic ambient noise data to obtain reliable broad-band surface wave dispersion measurements, Geophys. J. Int., 169, 1239-1260.
- Dziewonski, A., S.Bloch, and M. Landisman(1969), A technique for the analysis of transient seismic signals, Bull. Seism. Soc. Am., 59, 427-444.

中原(2015), 地震波干渉法, その1 歴史的経緯と原理, 地震, 第2輯, 第68巻(2015), 75-82頁

- Okada. H. (2003) : The Microtremor Survey Method, Geophysical Monograph Series, No. 12, Society of Exploration Geophysicists, 135
- Takagi R., Nakahara H., Kono T., and Okada T.(2014), Separating body and Rayleigh waves with cross terms of the cross-correlation tensor of ambient noise, J. Geophys. Res., 10.1002/2013JB010824.
- 山本英和(2000), 3 成分微動アレイ観測による Love 波の位相速度の推定の試み, 物理探査, 53, 153-166.
- 山本英和, 佐々木恭輔, 齊藤剛(2017): 浅部 2 次元 S 波速度構造推定を目的としたリニアアレイ で観測された短周期微動の地震波干渉法解析-岩手大学構内における試み-, 東北地域災害科学 研究第 53 巻, 157-162.
- 山本英和, 佐藤史佳, 齊藤剛(2016):福島県の広帯域リニアアレイで観測された常時微動の地 震波干渉法, 東北地域災害科学研究 第52巻, 263-268.

微動アレイ探査による盛岡市域におけるS波速度構造の推定 - 稠密極小アレイ観測と大規模アレイ観測 - *

岩手大学工学部 多田光希,大場星也 岩手大学理工学部 山本英和 齊藤剛

1. はじめに

都市の地震ハザード評価のためには特定の地域の浅部の S 波速度構造を面的に調査する必要が ある。今回調査対象の盛岡市では過去の複数の地震時の高密度アンケート震度調査から都市内の数 km の狭い範囲内で体感震度が 1 ないし 2 程度異なり,それが地盤増幅率の影響であることが山本 ほか(2005)で示唆されている。本研究では,新たに開発された浅部探査専用の装置を用いて稠密極 小アレイ探査を実施し,盛岡市域の地震ハザードに有用なS波速度構造分布を得ることが目的であ る。また同時に,やや長周期まで対象とした大規模アレイ探査を実施し,盛岡市のやや深部のS波 速度構造の推定を試みる。

2. 微動観測

稠密極小微動アレイ観測には 4DGeoTeK による GDAQ-4S を使用した。本装置は、中心に1台、 半径 60cm の円周上に3台、等間隔に配置された4台の固有周波数4.5Hz のジオフォーンで測定を 行う。サンプリング周波数は500Hz と設定した。極小アレイ探査地点では微動のH/V スペクトル 比を得るために単点微動観測も同時に実施している。単点観測は白山工業社製の微動計 JU310 を使 用した。サンプリング周波数は200Hz である。大規模アレイ探査の場合は、センサーにはレナルツ 社製 LE-3d/5s を、データ収録には白山工業社製のデータロガーLS8800 を使用した。サンプリング 周波数は100Hz である。アレイ半径は30m、100m、400m、1000m である。Anupap et al. (2018)で は、岩手大学周辺の盛岡市中心部において微動アレイ探査を行った。本研究ではその領域の西部の 青山地区と南部の本宮地区で測定を行った。図1に極小アレイ観測点および大アレイ観測点を示す。

月山、平呂地区に伐即のる仮座及悟垣の推足の与奈に用いる側線 AA わよい DD を取りている。

^{*} Estimation of S-wave velocity structures in Morioka area by using microtremor array survey – Observation using miniature arrays and one using large size arrays -by K.Tada, H.Yamamoto, S.Ohba and T.Saito

3. 微動の H/V スペクトル比

位相速度解析の前に、単点微動記録から H/V スペク トル比を計算し、ピーク周期分布を求めた。大アレイ では4点同時に微動を測定しているため、それぞれ単 独にスペクトルを計算した。図2に微動のスペクトル および H/V スペクトル比の例を示す。H/V スペクトル 比のピーク周波数を読み取り、その逆数からピーク周 期を算定した。図3に大アレイの微動記録から得た H/V スペクトル比ピーク周期分布を示す。図3(a)の青山地 区では周期は大局的には東から西にかけて約0.2秒か ら1.5秒と長くなっている。また、図3(b)からわかる

図2 微動のパワースペクトルと H/V スペクトル比の例

ように本宮地区でも同様の傾向が周期約0.4秒から1.4秒で見られた。したがって青山と本宮地区 どちらも西に行くにつれて基盤深度が深くなっていると考える。しかし観測点間隔が密になると場 所によって周期が急に異なる地点が一部見られた。これはH/Vの形状が複数ピークを示すことに起 因すると考えられる。そこで複数ピークがみられた地点において,低周波数帯の第1ピークと高周 波数帯の第2ピークに分けて考察する。図4に稠密観測点における第1ピーク周期分布を示す。ま ず第1ピーク周期を読み取った場合,(a)の青山地区と(b)の本宮地区両方で大アレイ観測時の微動 記録から得たピーク周期分布の傾向と類似していることが分かった。図5に稠密観測点における第 2ピーク周期分布を示す。次に第2ピーク周期を読み取った場合,こちらも(a),(b)両地区である 地点から西に向けて短い周期の第2ピーク周期が認められていたことが分かった。

図3 大アレイの微動記録による H/V ピーク周期分布 (a)青山地区 (b)本宮地区

図4 稠密観測の微動記録による H/V 第1ピーク周期分布 (a)青山地区 (b)本宮地区

図5 稠密観測の微動記録による H/V 第2ピーク周期分布 (a)青山地区 (b)本宮地区

4. 大アレイの微動記録によるS波速度構造の推定

大アレイの微動記録により、やや深部のS波速度構造を試みる。空間自己相関法(Aki. 1957)により、上下動アレイ微動から周波数ごとの位相速度分散曲線を算出した。観測値から得られた位相速度分散曲線からやや深部のS波速度構造の推定を行った。その際、推定された計算値と観測値の位相速度分散曲線が一致するように構造モデルの推定を行った。また同時にH/Vスペクトル比のピーク周期の一致も行い、信頼性を得た。図6に青山地区西部の計算値と観測値の位相速度分散曲線とH/Vスペクトル比を示す。

図6 大アレイ微動観測における計算値と観測値の比較 (左)位相速度分散曲線 (右)大アレイ中 心でのH/V スペクトル比

こうして得られたやや深部のS波速度構造を図7に示す。本研究では、対象地域を青山地区は西部 と東部に、本宮地区は西部と中央部、東部の計5つに分類して考察を行った。

基盤深度として Vs=2100m/s の層に注目する。青山地区では Vs=2100m/s の層に達するまでに東部 より西部の方がおよそ 80m 深い結果となった。また同様に、本宮地区でも Vs=2100m/s の層に達す るまで東部より中央部はおよそ 125m 深く、西部はおよそ 170m 深い結果となった。この結果、青 山地区と本宮地区両方で基盤深度が東から西にかけて深くなることが推測された。これは大アレイ の微動記録による H/V スペクトル比のピーク周期分布が大局的に東から西にかけて長くなる傾向 と一致している。

5. 稠密極小アレイの微動記録によるS波速度構造の推定

次に, 稠密極小アレイの微動記録による浅部のS波速度構造の推定を試みる。大アレイ時と同様, 空間自己相関法(Aki. 1957)により,周波数ごとの位相速度分散曲線を算出した。観測値から得られ た位相速度分散曲線から浅部のS波速度構造の推定を行った。その際,推定された計算値と観測値 の位相速度分散曲線が一致するようにモデルの推定を行った。また同時に,単点微動のH/V スペク トル比のピーク周期の一致も行い信頼性を得た。図8に稠密観測点の計算値と観測値の位相速度分 散曲線とH/V スペクトル比の例を示す。

図8 稠密微動観測における計算値と観測値の比較(左)位相速度分散曲線(右)H/V スペクトル比

こうして得られた浅部のS波速度構造を図9に示す。本研究では、青山地区の東西方向に測線AA' と本宮地区北部の東西方向に測線BB'を設け、考察を行った(測線の場所については図1を参照)。 ただし、Vs=400m/sに達する深さの違いから青山地区の測線AA'は深さ20mとし、本宮地区の測線 BB'は深さ10mとしている。また、考察を行う際見やすくするために色による識別を行った。赤色 に近いほど速度が遅く、青色に近いほど速度が速いことを表している。その図を図10に示す。

図9 浅部のS波速度構造 (左)青山地区測線 AA'(右)本宮地区北部測線 BB'

青山地区の測線AA'では東から3番目と4番目の地点から西に向けてVs=400m/sの層が次第に浅くなる部分が見られた。この傾向が青山地区の稠密観測点の第2ピーク周期分布の同地点の傾向に類

似していることから浅部のS波速度構造が稠密観測点の第2ピーク周期分布と相関があるのでは ないかと考えている。しかし、本宮地区の北部の測線BB'では第2ピーク周期分布との相関が確認 されていないため、今後も結果と考察について詰める必要がある。

6. 考察とまとめ

大アレイ観測によるやや深部のS波速度構造の推定と H/V スペクトル比のピーク周期分布による対象地域の概要の把握から,青山地区,本宮地区どちらも東から西に向けて基盤が深くなる推測できた。今回推定されたS波速度構造を J-SHIS の深部構造の同地区との比較を行ったところ,各層の速度構造はおよそ同じような結果となった(地震ハザードステーション,藤原ほか,2009)。しかし,どの地区でも J-SHIS の深部構造より全体的に速度構造が深い結果が出ていた。

また, 稠密極小アレイ観測による浅部のS波速度構造の推定とH/Vスペクトル比のピーク周期分 布による対象地域の概要の把握から青山地区と本宮地区で, または青山地区内, 本宮地区内など場 所によって浅部のS波速度構造が変化していると推測できた。またその変化はある地点で急激に変 化している部分も見られた。

大規模アレイ観測と稠密極小アレイを併用することでより詳細に地盤のS波速度構造を推測す ることができた。本研究では対象地域で観測可能な大アレイの半径として 1000m, 400m, 100m, 30m を採用したが,浅部の速度構造の推定に地区によって可能であれば 10m サイズや 50m サイズ など半径の小さいアレイ観測も加えることで,より詳細に信頼性の高いS波速度構造の推定が可能 であると考える。

謝辞

大規模アレイ観測および稠密極小アレイ観測の際に,岩手大学工学部社会環境工学科4年起田賢 親,川村匡永,佐々木恵太氏に観測を手伝っていただきました。記して感謝いたします。

参考文献

Aki, K.(1957) : Space and Time spectra of stationary stochastic waves, with special reference to microtremors : Bull. Eathq. Res Ins., 35, 415-456.

Anupap, W., H. Yamamoto, T. Saito (2018) : Estimation of S-wave velocity structures in Morioka area by dense microtremor array observations, 東北地域災害科学研究, 第 54 卷, 217-222.

藤原広行・河合伸一・青井真・森川信之・先名重樹・工藤暢章・大井昌弘・はお憲生・早川譲・遠 山信 彦・松山尚典・岩本鋼司・鈴木晴彦・劉瑛(2009): 強震動評価のための全国深部地盤 構造モデル作成手法の検討, 防災科学技術研究所研究資料 第 337 号.

山本英和, 佐野剛, 齋藤徳美, 齊藤裕輔, 佐々木俊之(2005): アンケート調査による 2003 年 5 月 26 日宮城県沖の地震における盛岡市域の詳細震度分布, 物理探査学会第 112 回学術講演会論文 集, pp. 180 - 183.

地震ハザードステーション:http://www.j-shis.bosai.go.jp/map/

- 秋田大学大学院理工学研究科 齋藤 憲寿
- 秋田大学大学院理工学研究科 高橋 圭太
- 秋田大学理工学部 西脇 遼

秋田大学大学院理工学研究科 渡辺 一也

1. はじめに

近年,光や熱など周囲環境に存在する微小なエネルギーを電力へ変換する技術(エネルギー ハーベスティング)が注目されている。エネルギーハーベスティングと呼ばれるのは、小型電 子機器の自立電源となり得る,数W程度の出力のエネルギー変換技術である。これまで小規模 な発電は用途が限られていたが、電子機器の省電力化技術の進歩に伴い用途が広がっている¹⁾。 例えば、1 μ W~数W程度の発電量があればセンサーで測定したデータを間欠的に無線送信す ることが可能であり²⁾、エナジーハーベスティングと無線センサー技術を組み合わせると、電 池の使用量削減、メンテナンス性の向上、配線重量の軽減、配線コストの低減、設計上の自由 度増大などの様々なメリットが考えられる³⁾。

我が国は河川や海洋などの再生可能エネルギーを豊富に有しており,福島原発事故以降,新たなエネルギーとして注目されている⁴⁾。特に,排他的経済水域を含めると世界第6位の海洋 面積を誇り,日本の沿岸域に到来する平均的な波エネルギー輸送量は少なくとも3500万 kW⁵⁾ と見積もられ,日本の総発電容量の3割に相当する。これらをマイクロ水力発電のエネルギー 源とすることで,センサーモジュールや通信モジュール等に対する長期間供給可能な電源や, 災害時における非常用電源として活用することが期待できる。

そこで、本研究では波エネルギーを対象とした再生可能エネルギーを活用する手法の一つと して、小型振り子発電装置を開発した。そして、水理実験を実施する前段階として陸上で基礎 的な発電実験を行った。

2. 発電機構の選定および振り子発電の仕組み

波エネルギーを利用する技術は、越波型、可動物体型、振動水柱型の3種類に分類できる。 本研究では可動物体型の一つとして、倒立振り子の流力振動を用いた発電⁶⁾を参考に、振り子 運動を発電に用いた。また、発電方法としてワンウェイクラッチを取り組んだギアボックス⁷⁾ により発電機を回転させる方法や、弾性圧電デバイス⁸⁾、柔軟発電デバイス⁹⁾、圧電素子^{10,11)} などさまざまな発電デバイスがあるが、本研究では汎用性の高い圧電素子を用いた。**写真1**に 小型振り子発電装置の概要を示す。中空の円柱でばねや歯車を必要としないため、極めてシン プルな構造である。まず、下端を回転自由にした発電装置を水中へ設置する。そして、波が発 電装置に衝突すると、衝撃力により発電装置が傾斜するが、浮力による復元力によって傾斜が

* Development of a compact pendulum power generator to utilize renewable energy by Noritoshi SAITO, Keita TAKAHASHI, Ryo NISHIWAKI and Kazuya WATANABE

写真1 小型振り子発電装置

戻るため,振り子のように動揺する。そこで, 圧電素子を用いて動揺(運動エネルギー)を 電気エネルギーへ変換する。

発電装置は本体の高さ 240 mm, 直径 65 mm であり, 円筒部分の容積は 400 ml に相 当する。また, 円筒内部には圧電素子, 圧電 素子の変位調整おもり 6.9 g, 角度, 角速度 および角加速度を計測するための 6 軸セン サーを搭載している。

3. 圧電素子の電気的特性

表 1 に本研究で用いた圧電素子の電気的 特性を示す。圧電素子は市販されているもの を使用し,長さ75mm,幅20mm,厚さ0.43 mmである。また,最大の出力電圧±80V,出

表1 圧電素子の電気的特性

Size(mm)	75×20×0.43		
Rezonant Frequency(Hz)	3300		
Rezonant Resistance(Ω)	300		
Electrostatic Capacitance(nF)	110		
Output Voltage(Vpp)	80		
Output Current(µA)	100		

図1 圧電素子の出力電圧波形

図2 圧電素子の変位と出力電圧の関係

力電流 100 μA である。ここで, 圧電素子の変位による出力電圧を確認するため, 圧電素子の下 部を固定し, おもりを付けない状態で上部を水平方向に変位させ, オシロスコープを用いて出 力電圧を計測した。図1に圧電素子の出力電圧波形, 図2に圧電素子の変位と出力電圧の最大 値の関係を示す。圧電素子の変位が無い場合, 出力電圧は0V であるが, 外力により変位が生 じた瞬間に出力電圧は大きくなり, その後減衰して0V へ戻る。また, 出力電圧は変位に対し て直線的に近似しており, 5.00 mm の変位に対して出力電圧の最大値は 31.70 V であった。

図4 振り子運動の周波数解析

図5 時間と出力電圧および角度の関係

4. 実験概要

写真2に発電実験の様子,図3に計測の概要を示す。発電装置を2軸(上下左右)方向に制 御可能なロボットアームへ設置し、ロボットアームの水平運動を振り子運動に変換して発電実 験を行った。発電装置に搭載している圧電素子および6軸センサーはワンボードマイコンの一 種である Aruduino に接続している。予備実験としてデータ処理速度について検討した結果、サ ンプリング可能な最小単位である 10 ms 毎に出力電圧、角度、角速度および角加速度を計測し、 ノートパソコンを用いてデータの記録を行った。なお、角度、角速度および角加速度の計測対 象は発電装置本体であり、圧電素子の変位を対象とした計測は行っていない。また、圧電素子 の電圧は交流で出力されるが、ブリッジ回路により整流することで出力電圧はすべて正の値と なっている。

設定条件は既往の研究⁸⁾を参考に,周期1sの規則波と同等となるようにロボットアームの 水平移動速度250 mm/s,振り子の角度 θ=0.60 rad とした。図4に振り子運動の周波数解析結果, 図5に振り子運動の時間と出力電圧および角度の関係を示す。周波数解析の結果,振り子運動 は1サイクルあたり0.98 Hz,すなわち1サイクルに要する時間は1.02 s であった。また,発電 装置の動きを見ると, 垂直である 0.00 rad から 0.26 s で 0.60 rad 傾き, 0.25 s 停止すると 0.26 s で垂直に戻り, 0.25 s 停止する。これらの動きを繰り返し行っている。

5. 実験結果および考察

図5を見ると、出力電圧は最高で10.22 V であり発電を確認できるが、振り子運動の角 度によって発電している箇所と発電してい ない箇所がそれぞれ見られた。また、圧電素 子の変位量について図1のおもりを用いてい ない状態における圧電素子の変位と出力電 圧の関係を見ると、おもり6.90g用いた実験 では圧電素子が最大で1.57mm程度変位して いたと考えられる。

図6に振り子運動の角度と出力電圧の関係 を示す。広範囲の角度で2.54V以上の発電が 確認できるが,発電装置が垂直である0.00 radまたは最も傾いている-0.60 rad付近では 出力電圧が高くなる傾向が見られた。しか し,図5における発電の状況を見ると,同じ 0.00 radまたは-0.60 radであっても,発電装 置の傾きが止まる瞬間は発電が見られるが, 傾き始める瞬間は発電が見られなかった。

図7に振り子運動の時間と角速度および角度の関係を示す。発電装置は-0.08~0.10 rad/sの範囲で振り子運動を行っており,角速度の最大値は-0.52 rad および-0.07 rad 付近に集中している。これはロボットアームの加速によるものと考えられる。また,角速度は加速し始めてから0.10 s でピークに達し,その後0.10 s かけて減速している。そして,発電装置の動きが停止した直後(0.00 rad または-0.60 rad 付近)は角速度の正負が交互に生じており,これはロボットアームの減速および停止に伴う慣性力が影響していると考えられる。

図8に振り子運動の角速度と出力電圧の関係を示す。図6と同様に広範囲において発電が確認できるが、0.05 rad/s以上では発電は見られなかった。また、角速度が0.00 rad/sに近づくほど出力電圧が高くなる傾向を示し、本研究で出力電圧の最大値が見られたのは-0.03 rad/s およ

び 0.00 rad/s であった。したがって、ロボットアームの減速または停止に起因する発電装置本体の動揺(慣性力)を圧電素子が吸収し、電気エネルギーへ変換していたと考えられる。

図9に振り子運動の時間と角加速度および角度の関係を示す。発電装置は-2.96~3.24 rad/s²の 範囲で振り子運動を行っており、角度に関係なく正負が交互に生じていることから、ロボット アームの加速、減速または停止が繰り返されることで発電装置が常に動揺していると考えられ る。また、角加速度が2.50 rad/s²以上になるのは発電装置が垂直で停止した瞬間であり、-2.50 rad/s²以下になるのは発電装置が垂直から傾き始めた瞬間であった。この状態について図7と 比較すると、角度0 rad (角速度0 rad/s)付近のときに角加速度は最大値である3.24 rad/s²であ ったことから、ロボットアームの停止に伴う発電装置本体の慣性力が最も大きいと考えられる。

図 10 に振り子運動の角速度と出力電圧の関係を示す。図 6 および図 8 と同様に広範囲において 2.54 V以上の発電が確認できるが、本研究の出力電圧の最大値が見られたのは 0.80 rad/s² および 2.72 rad/s² と明確な傾向が得られなかった。これは計測機器の分解能が 2.54 V であり、 角加速度の微細な変化を出力電圧の変化として計測できなかったことが要因と考えられるため、 計測機器の分解能を高め、詳細に検証することが今後の課題である。

6. まとめ

本研究は、小型振り子発電装置を開発し、陸上で基礎的な発電実験を実施することにより以 下の知見を得た。

- 1) 圧電素子を用いて振り子運動から発電できることを確認した。また,得られた出力電圧は 最大で 10.22 V であった。
- 2) 発電装置が垂直(0.00 rad) または最も傾いている状態(-0.60 rad) 付近では出力電圧が大き くなる傾向が見られた。しかし,同じ0.00 rad または-0.60 rad であっても,ロボットアーム が動き始めた瞬間は発電が見られなかった。
- ロボットアームの減速または停止に起因する発電装置本体の動揺(慣性力)を圧電素子が 吸収し、電気エネルギーへ変換していると考えられる。
- 4) ロボットアームが 0.10~0.25 s 間隔で加速,減速,停止を繰り返すことで発電装置本体が動

揺しやすい状況にあり、その結果、広範囲の角度で2.54V以上の発電を確認できた。

5) 今後は可傾斜造波循環水路を用いた水理実験を実施し、波エネルギーによる発電が可能か 検証していく予定である。

謝辞

本研究を遂行するにあたり、秋田大学大学院理工学研究科技術部 谷口智行技術長から貴重 なご助言を頂きました。ここに記して、謝意を表します。

参考文献

- 1) 竹内敬治:エネルギーハーベスティングの最新動向,表面技術, Vol.67, No.7, pp.334-338, 2016.
- Ottoman, G, Holfmann, H., Bhatt, A., and Lesieutre, G. : Adaptive Piezoelectric Energy Harvesting Circuit for Wireless Remote Power Supply, IEEE Transactions on Power Electronics, Vol.17, No.5, pp.669-676, 2002.
- 3) 山田昇,加藤洋平:圧電素子による沸騰減少からのエナジーハーベスティングに関する実験 研究,日本機会学会論文集(B編), Vol.79, No.804, pp.229-241, 2013.
- 4) 日本学術会議:再生可能エネルギー利用の長期展望, pp.1-40, 2017.
- 5) 高橋重雄, 安藤崇: 日本周辺の波パワーとその利用に関する一考察, 海岸工学論文集, 第36 巻, pp.874-878, 1989.
- 6) 比江島慎二,岡圭人,林健一,井上浩男:倒立振り子の流力振動を用いた発電のための基礎 的実験,土木学会論文集 B3(海洋開発), Vol.69, No.1, pp.12-21, 2013.
- 7) 石田啓,高地健,大貝秀司:振り子式波力エネルギー吸収装置による圧縮空気発生と消波特性に関する実験的研究,海洋開発論文集,第16巻,pp.105-110,2000.
- 8) 陸田秀実,川上健太,黒川剛幸,土井康明,田中義和:弾性圧電デバイスを用いた波エネル ギー利用技術の開発,土木学会論文集 B2(海岸工学), Vol.B2-65, No.1, pp.1296-1300, 2009.
- 9) 陸田秀実,大竹基喜,森崎健一,田中義和,土井康明,改森信吾,菅原潤,山中明:圧縮型 柔軟発電デバイスを用いた波エネルギー発電技術の開発,土木学会論文集 B2(海岸工学), Vol.70, No.2, pp.1316-1320, 2014.
- 10) 藤本大道,村井基彦,藤田修: 圧電素子を用いた波力発電に関する小型水槽実験,日本船舶 海洋工学会講演論文集,第9E号, pp.191-194, 2009.
- 11) 朝倉塁, 高橋智幸: カルマン渦列を利用した小型水力発電装置の開発と基礎的検討, 土木学 会論文集 B2(海岸工学), Vol.66, No.1, pp.1286-1290, 2010.

液状化実験を活用した効果的な防災教育の検討*

東北大学大学院理学研究科	手塚寛
東北大学大学院工学研究科	Muhammad Salman Al Farisi
東北大学大学院環境科学研究科	関亜美
東北大学大学院工学研究科	熊谷裕太
東北大学大学院理学研究科	新谷 直己
東北大学大学院情報科学研究科	宮鍋 慶介
東北大学災害科学国際研究所	久利 美和

1. はじめに

液状化現象は,強い地震動によって地面が液体のような挙動を示す現象である。液状化現象 による建物の沈下・傾斜はゆっくりと進行するため、人的被害につながりにくいが、被害が全 くないわけではない。例えば、2011年の東日本大震災において、液状化現象が道路の機能不全 を引き起こし、避難行動や救助活動が妨げられたことが指摘されている¹⁾。このように、液状 化現象は物的被害のみに留まらず、人的被害をもたらしうるものであるが、液状化現象とそれ によって引き起こされる被害については、一般には十分に認知されていないように思われる。 そこで、これまで我々は液状化現象のモデル実験(以下、液状化実験)を活用し、液状化現象 に関する防災教育を実施してきた。

モデル実験は、スケールの大きな事象を扱う地学・防災教育においてしばしば活用されてお り、断層の形成や津波の発生、火山噴火、液状化現象を題材にしたものなどが開発されている (例えば、川端・福田²⁾、笠間³⁾)。火山災害を引き起こす現象についてのモデル実験を開発し た浦野・林⁴によれば、モデル実験には(1)現象の疑似体験ができ、その現象を直感的に理解 できる、(2)観察・考察の対象とすることができる、(3)強い印象を残すことができる、とい った防災教育上も有益な効能がある。一方で、単にモデル実験を実施するだけでは涵養するこ とが難しい知識や思考力、態度もあろう。浦野・林⁴の教材を含めて、モデル実験を取り入れ た教材の多くがその点を考慮していることは言うまでもないが、防災教育にモデル実験を取り 入れるにあたって、どのような点に留意するべきかを整理しておくことは有益だと思われる。

そこで本稿では,液状化実験に解説や講義,ワークショップを組み合わせた教育実践を通して抽出された,モデル実験,特に液状化実験を防災教育の一環として実施する際に考慮すべき 性質とそれを踏まえた対策について述べる。

2. 液状化実験の手法

本研究で実施した防災教育では、2 種類の液状化実験を採用した。1 つ目は、防災科学技術

^{*}Investigation of effective education for disaster mitigation by utilizing liquefaction experiment, Hiroshi Tetsuka, Muhammad Salman Al Farisi, Tsugumi Seki, Yuta Kumagai, Naoki Araya, Keisuke Miyanabe, and Miwa Kuri.

研究所 ⁵によって提案されている「エッキー」を用いたものである。この実験では、ペットボ トルの中に砂と水、マップピンを入れた後、一度逆さにして元に戻し、砂が沈殿するのを待つ。 その後ペットボトルを指で叩くと、液状化現象によって砂に埋れていたマップピンが浮かんで くるのが確認できる。2 つ目は、長谷川ほか ⁶の手法である。この実験では、まず水槽に敷き 詰めた砂に水を十分に含ませ、その上に 3D プリンターで作製した建物模型を置き、地震前の 状態を再現する。水槽を置いた机を叩いて振動を加えると、模型が砂中に沈み、水槽内は水浸 しになる。これにより、地震発生後の液状化を模擬することができる。

3. 液状化実験を活用した防災教育の実施

小学生以下の子どもとその保護者が多く参加するサイエンスイベントや中学校での出張授 業において,対象年齢や地域特性に応じて液状化実験を活用した防災教育を実施した(表1)。

宮城県仙台市で開催されたサイエンスイベントには 2017 年と 2018 年の 2 回出展しており, 2017 年は 2 種類の液状化実験を参加者に体験してもらうことに加えて,図を用いて液状化実験 のメカニズムを解説した(図 1)。2018 年は,水槽を用いた液状化実験を体験してもらうのに加 えて,タブレットを用いてメカニズムを解説したり,仙台市の液状化ハザードマップを見せて 解説を加えたりした。2 回のイベントともに,子どものみならず大人も実験に興味をもち,楽 しんでいる様子が見られ,「なぜ起きるのか?」「どこで起きるのか?」といった疑問を口にす る人も多かった。参加者との会話や参加者の反応から推察するに,液状化現象が起こりうる場 所に関する情報は,事前にほとんど知られていなかった。液状化現象は埋め立て地でしか起き ないと思っているか,どこで起きるか知らない人が多く,仙台市が液状化のハザードマップを 公開していることも知らない人が大多数であった。

形式	サイエンスイベントへの出展	出張授業		
対象	小学生以下・保護者	中学生		
地域	宮城県仙台市	高知県高知市		
目的	 液状化現象とその被害について 理解を深める 	 液状化現象とその被害について 理解を深める 液状化被害を踏まえた上で津波 からの避難行動を考える 		
手法	実験・解説	実験・講義・グループワーク		

表1 実施した防災教育の一覧

図1 サイエンスイベントにおける液状化実験の様子

高知県高知市内の中学校2校では、モデル実験に加えて講義やグループワークを取り入れた 出張授業を開催した。実験は水槽を用いたものを用意し、生徒の代表に実施してもらった(図 2)。砂を敷いた上にじょうろで水をまき、その上に砂をかぶせたケース(地下水位が高い条件 を模擬)と、水をまかずに砂を敷き詰めたケース(地下水位が低い条件を模擬)の2つの条件 で実験を行ってもらうことで、土地の性質によって液状化現象の起こりやすさが異なることが 感覚的に理解できるようにした。講義では、液状化現象のメカニズムや起こりやすい条件、液 状化現象によって引き起こされる被害などを解説した。また、高知県作成の液状化可能性予測 図と,国土地理院の土地条件図,および高知平野西部の干拓の歴史を記した図を併せて紹介し, 液状化現象の起こりやすさと地形発達史や人為改変に密接な関連があり、土地の履歴を知るこ とによって危険性を知ることができる旨を伝えた。グループワークでは、液状化可能性予測図 と津波浸水の予測範囲・時間を記載している津波避難マップ(高知市作成)を参考にしつつ, 津波から避難する際、「どこへ・どのような手段で・どのようなルートで・何に気をつけるか」 を検討する議論を行った。なお、地震発生後に液状化現象以外で注意が必要な要因(ブロック 塀や古い家屋の倒壊など)については、グループワーク前に紹介した。このことにより、特定 の要因に着目するのではなく、総合的な議論がなされるようにした。議論に際しては、地域の 地形や建物・道路などの環境に詳しい中学校の先生方や高知県立大学の学生にも同席していた だいた。グループでの議論の後、生徒にはそれぞれのグループの意見を発表してもらった(図 3)。生徒からは、「瓦礫やガラスなどに気をつける」「橋を通らないようにする」「液状化してい るところを通らないようにする」といった意見が出され、それに対して我々や中学校の先生が コメントをしたり質問を行ったりすることで、より適切な避難について議論を深めていった。

図2 中学校での出張授業における液状化実験の様子

図3 中学校での出張授業におけるグループワーク発表の様子

4. モデル実験の効用の確認

浦野・林⁴⁾が指摘した,(1)現象の疑似体験ができ,その現象を直感的に理解できる,(2) 観察・考察の対象とすることができる,(3)強い印象を残すことができる,というモデル実験 の効能は、本研究における教育活動でも確認された。「観察・考察の対象とすることができる」 という効果については、サイエンスイベントでの実験体験者の発言から裏付けられたし、サイ エンスイベントと出張授業の両方で「強い印象を残すことができる」ことも確認された。また、 「現象の疑似体験ができ、その現象を直感的に理解できる」という効果については、客観的な 評価をすることができないものの、講義で液状化現象のメカニズムと起こりやすい条件の説明 をする際に液状化実験を実施したときの生徒の反応を見た限りでは、その効果が感じられた。 これらの効用は、災害に関する知識の習得や探究心を高める上で有益であり、体験者に強い印 象を残すことで、災害を引き起こす現象への興味関心が惹きやすいことから、防災教育の導入 としても適していることが窺える。

5. 防災教育において考慮すべき液状化実験の性質と対応策

本研究における教育活動を踏まえ、防災教育に活用する際に考慮すべき液状化実験の性質と して以下の3点を抽出した。すなわち、(1)防災上必要な知識の習得に限界があること、(2) 実際の被害や状況を想像することが難しいこと、(3)主体的・実践的な思考力や態度は涵養さ れにくいこと、である。

(1)「防災上必要な知識の習得に限界があること」は、液状化実験と簡単な解説を実施した サイエンスイベントの事例から窺えるものである。当然のことながら、モデル実験をするのみ では、発生しやすい場所の理解には直接結びつかないし、どこで防災に必要な情報を入手でき るのかを知ることができない。ゆえに、適切な解説や情報提供を併せて行うことが有効だと思 われる。

(2)「実際の被害や状況を想像することが難しいこと」は、液状化実験に加えて講義とグル ープワークを実施した出張授業の事例から窺えるものである。実験と講義の後、生徒が津波か らの避難に関するグループワークの成果を発表した際、避難時に自転車を使用すると述べたグ ループがあった。自転車は生徒にとって身近な乗り物であるが、液状化現象が発生すると道が 荒れて通行が困難になる場合があり、基本的には最優先される選択肢と言えないだろう。道が どの程度荒れうるのかについては、講義中に写真を用いて簡単に示したが、印象づけが不十分 であった可能性がある。分かりやすい写真や動画を用いて実際の被害状況を示すことで、発災 時の様子を想像しやすくする工夫が有効だと思われる。また、本事例は、実践的な理解度を確 認する場としてもグループワークが機能することを示している。

(3)「主体的・実践的な思考力や態度は涵養されにくいこと」は、液状化実験で確認した現象も踏まえて総合的な議論が展開されていたグループワークと比べた、相対的な評価によるものである。防災への応用を念頭におく場合、本研究で実施したグループワークのように、液状化現象以外の危険要因についても総合的に検討し、発災時の行動を実践的に議論する場が重要だと考えられる。

上記の点は、あくまで本研究で実施した液状化実験の事例から見出されたものであり、モデ ル実験一般に当てはまることを必ずしも保証しないが、ある程度は共通の傾向を示すと思われ る。

6. おわりに

本研究における教育活動においても、モデル実験の有効性が確認された。強い印象を残せる ようなモデル実験を実施することは、災害を引き起こす現象への興味関心を高めるための導入 として有効なアプローチであるし、現象への直感的な理解が促進する上、「なぜ起こるのか」を 考えるきっかけにもなる。 防災教育のために液状化実験を活用する場合,実験の強みを活かした上で,(1)防災上必要 な知識の習得に限界がある,(2)実際の被害や状況を想像することが難しい,(3)主体的・実 践的な思考力や態度は涵養されにくい,といった性質を踏まえた工夫が有効である。上記の性 質を念頭においた上で,対象の地域特性や年齢層に応じた解説や講義,総合的・実践的なグル ープワークを実施することにより,災害リスクを理解する上で重要な知識や想像力,実践的な 思考力および態度の習得が促進されると考えられる。

謝辞

本研究は、文部科学省博士課程教育リーディングプログラム「グローバル安全学トップリー ダー育成プログラム」による支援を受けた。サイエンスイベントでの活動にあたっては、「グロ ーバル安全学トップリーダー育成プログラム」に所属する東北大学の長谷川翔氏にご協力いた だいた。出張授業の実施にあたっては、訪問した中学校の先生方や、文部科学省博士課程教育 リーディングプログラムである「災害看護グルーバルリーダー養成プログラム」に所属する高 知県立大学の西川愛海氏、野島真美氏、河村木綿子氏にご協力いただいた。以上の皆さまに心 より感謝申し上げる。

参考文献

1)若松加寿江:東北地方太平洋沖地震による液状化被害の特徴,消防科学と情報,no.110,2012
 2)川端紹義・福田修武:防災教育を意識した地震のモデル実験について,和歌山県教育研修セ

ンター研究紀要, pp. 64-75, 2004.

- 3) 笠間友博: 2011 年新燃岳噴火に関連した博物館教育実践報告, 神奈川県立博物館研究報告, no. 42, pp. 1-6, 2013.
- 4) 浦野弘,林信太郎:災害を理解し,防災を意識する教材の開発―火山に焦点をあてたモデル 実験の開発とその効果―,日本科学教育学会年会論文集,vol. 28, pp. 577-578, 2004.
- 5)防災科学技術研究所:感性でとらえる地盤液状化の科学おもちゃ エッキー, 2016. http://www.bosai.go.jp/activity general/ekky/ekky.pdf.
- 6)長谷川翔,石澤尭史,磯崎匡,伊藤大樹,昆周作,佐々木隼相,平田萌々子,松岡祐也,山田修司:安全・安心の社会的実装に向けた学際的調査と提案一福島県いわき市沿岸地域に根付く防災・減災,東北大学グローバル安全学トップリーダー育成プログラム学生自主企画活動報告書,第3章,pp.32-83,2017.

自主的・持続的な防災教育活動の普及を目指した実施支援

-減災アクションカードゲームを例に-

東北大学大学院環境科学研究科 関亜美

東北大学大学院工学研究科 Muhammad Salman Al Farisi

東北大学大学院理学研究科 手塚寛

東北大学大学院工学研究科 石橋信治

東北大学大学院工学研究科 熊谷裕太

- 東北大学大学院理学研究科 新谷直己
- 東北大学災害科学国際研究所 久利美和

1. はじめに

東日本大震災の発生を契機に、学校における防災教育の指針として、「災害に適切に対応す る能力の基礎を培う」ための防災教育の充実が求められている¹⁾。特に、「東日本大震災を受 けた防災教育・防災管理等に関する有識者会議」²⁾では、子どもらが自ら危険を予測して回避 するために、「主体的に行動する態度」を育成する防災教育の重要性が示された。現在実施さ れている実践的な防災教育として、学校における日頃からの避難訓練²⁾や、防災に関する参加 型ワークショップなど³⁾があるが、より主体性を涵養するための防災教育手法が必要であると 考える。さらに、学校防災教育終了後1年以上が経過すると、防災に関する知識や意識は低下 するといった報告がある³⁾。人々に災害や防災に関する意識を根付かせるためには、地域が自 ら主体となり、持続的に防災教育を展開することが重要であり、佐々木ら⁴⁾は、地域が主体と なった持続的な防災教育の実施は、地域の活性化のために不可欠という新たな価値を位置付け た。しかしながら、地域が主体となった防災教育の実現には、高度な知識がなくとも実践可能 な手法が必要だと思われる。

これまで、主体的かつ持続的な防災教育に資する教材として、ゲーミングを活用したツール が多く開発されている^{5,6}、ゲーミングは、楽しく気軽に実施できる利点があるほか、一度ル ールを理解すれば誰でも容易に実施できるため、「誰もが先生になる可能性をもつ」といった 大きな特徴を持つ⁵⁾。久松ら⁷⁾は、小・中学生でも楽しく学習できることに重点を置き、より 実用的な「思考促進型」であるゲーミング教材として、災害発生時におけるとっさの判断力お よび適切な行動力を学習できる減災アクションカードゲーム(Disaster Mitigation Action Card game、DMAC)を開発した。DMAC は、文字を使用せずにピクトグラムを用いて様々な行動 が描かれたカード(全 27 枚)を用いて、かるたのようにカードを囲んで実施するゲームであ り(図 1)、年齢や国籍を問わず実施することが可能である^{8,9}。詳細なルールは久松ら⁷⁾の報

^{*}Support activities aimed at dissemination of voluntary and sustainable education for disaster mitigation: an example of the Disaster Mitigation Action Card Game by Tsugumi Seki, Muhammad Salman Al Farisi, Hiroshi Tetsuka, Shinji Ishibashi, Yuta Kumagai, Naoki Araya, Miwa Kuri

告を参照されたいが、ゲームは、全体の進行を行う「ゲームマスター」、各グループに入って 議論のファシリテーターを担う「サブマスター」、議論を行う「プレイヤー」の 3 役で構成さ れる。

図1 減災アクションカードゲーム実施のイメージ

これまで DMAC 開発者らは各地でのゲーム普及に向け,より多くの地域で運営側の人数を 増やす試みを行ってきた⁷⁾。一方,未だ DMAC 実施の際には,開発者ら大学院生が実施先に 出向き,ゲームマスターおよびサブマスターを担うことが多く,地域主体かつ持続的な防災教 育を実施するための環境づくりには課題があった。

そこで本研究では,DMAC の実施支援を行うことで,地域住民自らが DMAC を用いた実践 的・持続的な防災教育を行うためのシステム構築を目指した。具体的には,(1)地域の高校生 や大学生に DMAC の講習会を実施,(2)講習を受けた高校生や大学生(地域住民)を主体と した DMAC の実践,の2段階で実施され,以降は開発者らが出向かずとも,持続的にDMAC を用いた防災教育が実施できる環境づくりを行なった。同時に,現地の学生を巻き込むことで, より多くの地域住民が防災意識を持つきっかけとなる場を提供できることを期待した。

2. 実施支援実績および概要

DMAC 開発者らによって、サブマスターやゲームマスター養成用の教材として「サブマス ター講習」が用意されている。2015 年度以降に開発者らが実施した DMAC のサブマスター講 習について、実施対象、人数、講習会後の自主的な DMAC の実践件数を表1に示す。なお、 表1には養成講座としての実施のみならず、学会、研究会、教員研修などでの DMAC の紹介 をきっかけとした実施報告も含まれている。

これまで、各地で計 290 名以上を対象にサブマスター講習会を実施しており、さらに受講者 らを中心として全国で 26 件以上の自主的な DMAC の実践報告を受けている。

日付	場所	対象	人数	実践件数
2015/5/10	国士舘大学	救命救急コース学生	20	多摩市内小学校1件ほか 海外など多数
2015/8/7	東北大学	小中高教員	20	名取市内小学校1件 横浜市内小学校1件
2015/11/6	茨城大学	水戸市小学校保護者・茨城 大学ほか	25	水戸市内小学校1件
2015/12/19	東北大学	神戸市内高校	7	神戸市内小学校1件 防災イベント1件
2016/1/24	NPO 法人 明日のたね	山形県鶴岡市	6	研修会1件 鶴岡市内小学校1件
2016/1/30	東北大学	仙台市内高校	4	米国高校生(英語実施) 1件
2016/3/5	東北大学	東北大学グローバルラーニ ングセンター	3	米国大学生(英語実施) 1件
2016/3/24	東北大学	しおがま女性防災ネット	2	研修会2件
2016/4/8	東北大学	東北大学文学研究科学生	15	東北大学新入生安全教育 研修1件
2016/6/26	東北福祉大学	Support Our Kids / Habataki 海外研修事前教育	100	研修会多数
2016/7/17	東北大学	猪苗代町青年組合	2	福島県イベント1件
2016/8/8	東北大学	小中高教員	28	宮城県内1件
2016/11/6	熊本大学	熊本大学 HIGO プログラム	20	リーディング大学院共催 企画1件
2016/12/18	東北大学	神戸大学附属高校	7	防災イベント複数 "神戸版" 開発
2017/9//9	東北大学	「JICA 青年研修ミャンマー /防災コース研修」	15	石巻市内高等学校1件
2017/10/27	茨城大学	茨城大学子どもふれあい隊 サークル	12	茨城市内中学校1件 (ゲームマスターは筆者 らが担当)
2017/12/17	鶴岡工業高等 専門学校	鶴岡高専サービス・ デザイン部	4	 庄内町防災イベント1件 (ゲームマスターは筆者 らが担当) 大学生向け1件 高齢者向け2件 PTA 役員向け1件

表1. DMAC サブマスター講習実施概要

本稿では特に,2017年に筆者らを中心にサブマスター講習を実施した茨城県水戸市および 山形県庄内町での実践例を述べる。実施概要は以下の通りである。東北大学が外部で実施され るイベントにおいて DMAC の運営を依頼された後、イベントが開催される地域の高校生や大 学生に DMAC の運営補助を依頼し、イベント開催前日に、補助を依頼した地元の高校生や大 学生向けに講習会を開催した。講習会では、サブマスター講習用教材を用いて、DMAC の開 発経緯や実施目的、ルールの説明、イベント当日に出題を予定している問題を用いた実践およ びサブマスターの体験・練習を行い、最後に出題問題の解説や議論のポイントを伝えた。その 際、開発者らが作成した DMAC 実施マニュアルの簡易版のものを配布した。イベント当日は、 筆者らが高校生や大学生のサポートを兼ねてゲームマスターを担い、講習を受けた高校生や大 学生にはサブマスターまたはプレイヤーとして各グループに加わってグループの議論促進する 補助する役割を依頼した。そしてイベント後も、サブマスター講習を受講した学生やゲームを 体験した方々を中心に、地域が主体的・継続的に DMAC を用いた防災教育を実施することに より、地域全体として防災・減災に備えられるような環境構築を狙いとしている。

3. 実施支援詳細と成果

3.1. 茨城県水戸市

水戸市で実施した例では、筆者ら2人がイベント本番の前日に茨城大学に出向き、茨城大学 子どもふれあい隊サークルの学生12名にDMACの講習会を行った。翌日のゲーム実施当日は、 小・中学生および保護者を対象に、前半・後半に分けた2部構成とし、第1部では小・中学生 の学年・性別を混合した4~5名グループを6班作った。前日にサブマスター講習を受けた学生 は各班に2名ずつ、サブマスターおよびプレイヤーとして加わってゲームを実施した。第2部 では保護者を対象として、男性グループ1班、女性グループ3班の計4班に分け、茨城大学の 学生は各班に1人サブマスターとして加わり、子供といる際に災害が起こる状況を想定した問 題も交えながらゲームを実施した。問題はどちらも、地震、津波、停電、洪水の計4題とし、 問題文は、国営ひたち海水公園や那珂川といった地域に実在する場所を織り込んで作成した。

ゲーム当日に参加者に実施したアンケートでは、「このゲームをまたやりたいか」「災害から 身を守る方法をもっと知りたいと思うか」という問いに対し、どちらも参加者のうち 88% が 「とてもそう思う」「そう思う」といった意欲的な回答をしていた。また参加者の半数以上が、 「DMAC や防災の事を家族に伝えたい」という意思を示していた。保護者らにとっては、東 日本大震災の経験を鮮明に思い出し、災害について考え直すきかっけになっていた。

3.2. 山形県庄内町

庄内町では,筆者ら3人がイベント本番の前日に鶴岡工業高等専門学校のサービス・デザイン部の学生4名と顧問1名に向けた講習会を行った。ゲーム実施当日は,小学校低学年~60歳代と幅広い年代の地域住民を対象に,年代・性別を混合した4班構成でゲームを実施した。前日にサブマスター講習を受けた鶴岡高専生には,サブマスターとして各班に入ってもらった。 水戸市での実施回と同様にゲームマスターは筆者らが担当し,問題は,地震,津波,停電,洪水の計4題とし,問題文には湯野浜海水浴場や最上川などの庄内町に実在する名詞を織り込んで出題した。 庄内町では、参加者の多くが初めて DMAC を体験していた。参加者の中には、教育関係者 で、自分の学校や地域でも防災意識を高めるために DMAC を広めたいとカードの取り寄せを 希望する声があった。また、福祉施設の関係者より、施設の入居者向けにコミュニケーション 促進のツールとして使いたいという声もあり、DMAC はプレイヤー全員に発言の機会が与え られている点において、コミュニケーション能力を鍛えるための教材としても有効である。本 支援活動後、庄内地域では本活動への参加者を中心に、大学生 20 名、高齢者 20 名、PTA 役員 15 名、学童支援の高齢者(女性)30 名を対象として自主的に DMAC を用いた防災教育を実施 した報告を受けている。主催者によると、庄内地域は太平洋側の地域に比べて災害に対する意 識が低く、時折趣旨説明に時間を要することもあったが、DMAC はゲーム感覚で気軽に楽し く実施できるためハードルが低く参加しやすい様子があり、防災に触れるきっかけになるため 非常に有効な防災教育教材であるといった感想を受けた。

4. 考察

DMAC は参加者らが自ら災害が発生した場合のとっさの行動について考え、意見を共有・ 議論する教材であり、ゲーム感覚で実践することができる。本研究で目的としていた、地域の 高校生や大学生に DMAC の講習会を実施したのち、講習を受けた高校生や大学生(地域住民) を主体とした DMAC の実践することで、より多くの地域住民らが防災意識を持つきっかけと なる場が提供できたほか、イベント参加者を中心とした継続的に DMAC を用いた防災教育が 実施できるシステムづくりに成功した。

地域の自主的な DMAC を用いた防災教育の実践に関して,運営者らはサブマスター講習を 受ける、またはマニュアルや DMAC のホームページより DMAC のルールおよび進行方法を学 ぶことで、容易に運営側に回ることが可能であるため、主催側の知識レベルなどに関して高望 みをする必要はない。さらに、DMAC は体験回数を重ねるごとに、ゲームに参加するプレイ ヤーは反応が早くなる,回答がより詳細化する(例えば,DMAC 未経験時はカードを取って 理由を説明することに精一杯だった人が,2回目は帰宅途中に地震が起こる問題で,「自分の 家は海から近いので,家には向かわずに日頃訓練している避難場所である公園に向かう」など, 自宅の周囲環境を意識した発言をする)など、とっさの判断力や適切な対応力が向上している 様子が見受けられた。プレイヤーのみならず、ゲームマスターやサブマスターといったゲーム を運営する側である主催者らも、実践回を重ねるごとにファシリテーターとしての能力が向上 し、ゲームの参加者に合わせたゲームの進行や議論の促進・詳細化(全員の意見を聞いた後、 時系列を整理してまとめるなど)が図られている。DMAC は地域が主体となって気軽に実施 することが可能であるため,被災地において災害の記憶を持続させる他に,特に災害が少ない 地域では、災害や防災に関心を持つきっかけ作りとして取り掛かりやすい点において大きな利 点である。DMAC を用いた防災教育を地域主体・継続的に実施することで、地域全体として の防災意識の向上および防災・減災への備えが実現する。

5. まとめ

地域に防災意識を根付かせるためには、地域主体かつ継続的な防災教育の実施が望まれてい る一方で、防災教育は主催側の防災に関する知識力が求められるため容易に実施することが難 しい。さらに防災訓練を受動的に受けるだけでなく、能動的に防災意識を持つことは、発災時 の自助・共助・公助能力の向上のために非常に重要である。防災教育実施支援の一環として、 多くの地域住民を巻き込んだ DMAC を実施することで、多くの人が気軽に防災に触れるきっ かけとなり、その後も継続的に地域主体型の防災教育が実施されることで、地域全体が一体と なった防災・減災への備えが実現する。

謝辞

本研究は、文部科学省博士課程教育リーディングプログラム「グローバル安全学トップリー ダー育成プログラム」による支援を受けて実施致しました。また、本論文執筆において自主的 な実践に関する情報を提供していただいた NPO 法人明日のたね 伊藤和美様をはじめとする、 これまで DMAC 実施において協力いただいたみなさまに感謝致します。

参考文献

1) 文部科学省,学校防災のための参考資料「生きる力」を育む防災教育の展開(平成 25 年 3 月),2013

https://anzenkyouiku.mext.go.jp/mextshiryou/data/saigai03.pdf(参照年月日: 2019.1.4)

2) 文部科学省,「東日本大震災を受けた防災教育・防災管理等に関する有識者会議」最終報告 (平成24年7月),2012

http://www.mext.go.jp/b_menu/shingi/chousa/sports/012/toushin/__icsFiles/afieldfile/2012/07/31/1 324017 01.pdf (参照年月日: 2019.1.4)

- 3) 黒崎ひろみ, 中野晋, 橋本誠, 東雲礼華, 地震・ 津波をテーマとした学校防災教育効果の持続 と低下, 土木学会論文集 B2(海岸工学), 66-1, pp. 401-405, 2010
- 4) 佐々木隼相,山田修司,綿引周,久利美和,防災教育と社会実装-福島県いわき市沿岸部を事例 として,東北地域災害科学研究,54, pp. 285-290, 2018
- 5) 吉川肇子, 防災教育にゲーミングを生かす, 自然災害科学, 24-4, pp. 363-369, 2006
- 6) 吉川肇子, 矢守克也, 杉浦淳吉, クロスロード・ネクスト -続・ゲームで学ぶリスク・コミュ ニケーション-, 株式会社ナカニシヤ出版, 2009
- 7) 久松明史,山田修司,渡邉俊介,金子亮介,牧野嶋文泰,秋戸優花,望月達人,吉田奈央,三嶋葵, 久利美和,今村文彦,湯上浩雄,参加型防災学習の新教材「減災アクションカードゲーム」の開 発と普及,津波工学研究報告,32, pp. 301-317, 2015
- 8) 富田史章, 大柳良介, 久松明史, 山田修司, 石橋信治, 渡邉俊介, 金子亮介, 安西瞳, 久利美和, ア ンケート調査による小・中学生対象の防災教育教材「減災アクションカードゲーム」の効果測 定, 災害情報, No. 15-2, pp. 207-219, 2017

9) R. Kaneko, M. S. Al Farisi, S. Yamada, M. Kuri, Evaluation of the Disaster Mitigation Action Card Game for international students in Japan, 東北地域災害科学研究, 54, pp. 279-284, 2018
山形大学の教員養成における学校防災教育-教職大学院と学部-*

山形大学大学院教育実践研究科 村山 良之

1. はじめに

2019年度からの新しい教職課程に対応するため,教職課程編成の指針「教職課程コアカリキ ュラム」が2017年11月に示された。そこでは、(災害安全を含む)学校安全への対応に関する 基礎的知識を身に付けることが目標の1つに挙げられ,大学では教職課程の必修科目の中でこ れに対応することとなった。学校安全に関する授業科目を設定する場合や,関連科目の授業コ マで確保の場合等,大学の裁量によって多様であるとされる。山形大学地域教育文化学部では, 2015年度から小学校教員養成コースにおいて「教員になるための学校防災の基礎」を開設し, 2017年度からは必修科目として本格開講している。さらにそれに先行して,大学院教育実践研 究科(教職大学院)では,必修科目「学校の安全と防災教育」を2009年度研究科設置時から開 講している。本研究は,それらの実践を踏まえた成果と課題について検討するものである。

2. 地域教育文化学部「教員になるための学校防災の基礎」

表1 「教員になるための学校防災の基礎」 2018 年度実績

01	オリエンテーション 学校防災の課題,教員紹介 村山
02	地質学の基礎:低地(沖積低地) 川邉
03	地形学の基礎:地形の成り立ちと災害の痕跡 八木
04	水害:沖積低地と土地利用 村山
05	土砂災害 八木
06	火山のしくみと火山災害 山形地方気象台 阿部
07	地震・津波の基礎 山形地方気象台 福田
08	気象の基礎 山形地方気象台 鈴木
09	気象災害 山形地方気象台 上野
10	学校の防災管理① 前提 ハザードと土地条件 村山
11	学校の防災管理② 東日本大震災の教訓 村山
12	防災教育の実践例① 防災教育の効果 村山
13	防災教育の実践例② 教科や特別活動での防災教育 村山
14	防災教育の実践例③ 防災ゲーム 村山
15	学校の防災管理③ 学校地域連携,学校の危機管理 齋藤

2015 年度~18 年度通して、15 回の授業のうち、前半は地球科学的内容 8 回、後半は学校防 災の実践的内容という構成で(表 1)、開講初年度(村山、2016)から全体構成は大きな変化は ない。地球科学的内容を重視していること、学部内の教員 3 人(川邉、八木、村山)に加えて、

*Disaster education in the course of teacher training in Yamagata University by Yoshiyuki Murayama

山形地方気象台の専門家(今年度は阿部,福田,鈴木,上野)による授業4回,現職校長(齋藤)による授業1回を含むことが,本授業の特徴である。

学部実施の授業改善アンケート(無記名)の総合評価(総合的に判断すると良い授業だと思うか:はい5点~いいえ1点)によると、その平均値は17年度以後大きく低下した(表2)。 17年度から必修となり、選択科目だった前年度までと比べて受講生が約2倍に増えた。受講生のおよそ半分はそもそも受講を希望しなかった学生であると推察され、それが低下の主因と考えられる。必修化後では、18年度は17年度に比べて若干改善していることもわかる。

表2 授業改善アンケートの総合評価(学部実施,無記名)

2015 年度	4.64	n=36	回谷数 30 以上の授業 61 のりら 13 位
2016年度	4.65	n=46	回答数 30 以上の授業 69 のうち 21 位
2017 年度	3.56	n=67	回答数 50 以上の授業 23 のうち 21 位
2018 年度	3.98	n=93	回答数 70 以上の授業 17 のうち 12 位

しかしながら,独自アンケート調査(無記名)結果によると、17年度よりも18年度が改善 したとはいえないことがわかった(表3)。授業前半(地球科学),授業後半(学校防災),授業 全体のそれぞれについて,「難しい/やや難しい/どちらともいえない/やや易しい/易しい」 のいずれかを尋ねた問いに対しては、18年度の方が前半について(やや)難しいとした割合が 高くなった。「全く有益でない/あまり有益でない/どちらともいえない/少し有益/有益」へ の問いに対しては、前半、後半、全体のいずれについても、(やや)有益と評価した学生の割合 が低下した。17年度は、前半については(やや)難しいとする回答が多かったにもかかわらず (やや)有益との回答が約2/3あったが、18年度はそれが半分以下になってしまった。授業全 体についても、難易度評価は下がらなかったのに有益感は明瞭に低下してしまった。

 難し	い+やや難	しい (%)	有益+少し有益(%)			
年度	地球科学	学校防災	授業全体	地球科学	学校防災	授業全体
2017	65	19	76	66	91	76
2018	74	19	70	46	83	67

表 3 独自アンケートによる評価(無記名, 2017 n=80, 2018 n=98)

全 15 回のうち有益または有意義と感じた授業回をあげてもらう問いについても、全体的に 17 年度よりも 18 年度の方が反応が少ない傾向である(17 年度データ割愛)。18 年度について みると(図1),前半の反応が低い傾向は明らかで、とくに学内教員担当授業回が低い。一方で 気象台担当の授業回はこれより反応が高い。後半についても、現職校長の担当回の反応が際立 って多い。以上は前年度と同じ傾向であり、筆者を含む学内教員の授業改善が強く求められる。 例年評価の高い気象台担当回でかつ担当者が同じ授業回においても、18 年度の方が若干低い傾 向も認められることから、もともと 18 年度受講生が地球科学的内容への忌避感が強いことも考 えられる。しかしたとえそうであっても、授業改善の検討が必要であろう。

図1 とくに有益または有意義と感じた授業(複数回答,実数,n=98 独自アンケートによる評価(無記名)

表4 独自アンケートにおける総合評価と自由記述の例

a 授業を受ける前と後で学校防災に対する考えについて変化したこと b 授業への感想および来年度に向けての提案

・総合評価 2 あまり有益でない

a学校側の対応によって子どもたちの生死が決まると考えが深まった。

b 地学を履修していなかったので、前半の内容が難しかったと感じた。

・総合評価 3 どちらともいえない

a 津波,地震の防災にしか関心が無かったので,他の災害についての知識を学ぶことができてよかった。
 b 災害のメカニズムに力を入れすぎている。児童教育コースなので授業の事例に力を入れてほしかった。

- ・総合評価 3 どちらともいえない
 - a 災害はどれも命に関わる重たい話であるし、その重大さを子どもたちにも伝えるべきと考えていたが、 現在では子どもたちにはあくまで"楽しく"防災教育をする方が子どもたちの記憶に残り役に立つのだ と考え方が変わった。

b 講義で得た新たな視点や考え方,知識を今後も忘れずにいようと思う。

- ・総合評価 5 有益
 - a 自分の住んでる地域について、どのような災害が起こるかや、近くの避難所はどこかなどについて考え るようになった。

b 教員になるための必ず知っておかなければならない知識だと思うので、続けてほしい。

一方,自由既述の内容をみると,総合評価が高くない受講生でも,本授業科目に対して肯定 的な記載内容が認められることも事実である(表 4)。総合評価の数値から,17年度との比較か ら18年度の授業が改善されたとは言い難いが,単に悪化したと捉えるのも誤りであろう。

3. 教職大学院「学校の安全と防災教育」

表5は、開講10年目にあたる2018年度の授業計画である。最近数年はおおよそこのような 計画で実施している。地震災害を中心にその土地条件とハザードに重点を置いていること、東 日本大震災時の学校防災の課題を基盤にしていること、受講生による発表の機会が多いことが、 本授業の特徴である。他の自然災害とくに水害と土砂災害は06~09回等で触れている。10~12 回は学校防災(防災管理と防災教育)の実践的内容である。

表5 「学校の安全と防災教育」授業計画 2018年度

01	ガイダンス/授業の目的、方法、防災教育の現状と課題
02	災害事例①/東日本大震災 ハザードと基本的メカニズム
03	災害事例②/東日本大震災の教訓 発表会①
04	災害事例③/東日本大震災の教訓 発表会②
05	災害事例④/東日本大震災の教訓 発表会③
06	災害論①/災害の土地条件(沖積低地)
07	災害論②/災害の土地条件(水害,液状化,低地まとめ)
08	災害論③/災害の土地条件(丘陵地,活断層)
09	災害論④/災害の一般的構造,防災法体系
10	学校防災①/防災管理
11	学校防災②/防災教育①大雨避難ワークショップ他
12	学校防災③/防災教育②クロスロード他
13	防災教育発表会①
14	防災教育発表会②
15	防災教育発表会③ まとめ

前半の発表会は、「東日本大震災における学校等の被害と対応に関するヒアリング調査記録集 増補第四版」(安全教育学会編,2014)から、受講生が1校ずつ担当して記録集の内容とその後 について紹介するものである。近年の隣県の状況とは対照的に、山形県は1964年新潟地震、1967 年羽越水害以降大きな自然災害を経験しておらず、東日本大震災でも同様であった。受講生は、 そのほとんどが県内出身または県内の教員である。上記記録集の記載から大震災時の学校の 生々しい状況を知りその後の状況をインターネット等から得ることとなり、また発表会で多く の学校の情報を共有することで学校や地域によってまったく状況が異なることも知ることとな る(受講生の感想割愛)。本授業を受講するモチベーションを高める効果も推測できる。

授業最後の発表会は、防災に関する授業案、学校防災マニュアル案等を提示するものである。 以前の修了生が発表したなかには、その後実際に学校現場で実践されたものも複数あり、防災 行事として定着しているものもある。最新の2018年2月の最終発表会では、勤務校の防災マニ ュアル案(引き渡し、避難所、修学旅行時等)現職院生、勤務校の防災取組(現況報告と改善 案)現職、勤務校の地域合同防災訓練案(水害)現職、小1生活科(公園に行く)現職、中学 数学(スマホバッテリで一次関数)学部卒院生、小学校の総合・国語・理科・道徳(カリキュ ラム・マネジメントで防災)学部卒,特支の楽しく学ぶ防災(指導案いろいろ)現職 等が提 案された。当該年もじつに多様な提案がなされた。そして,それらの発表や授業全体をふり返 って,表6のような感想,コメントが得られた。

表 6 2017 年度最終発表会後の感想例(2018 年 2 月) いずれも一部改変

・学部卒院生 高校国語志望 防災教育というと、そんなにバリエーション豊かになるだろうかと思っていた が、似たような提案がひとつもなく、全て違っていておもしろかった。/数学や国語と関連付けた発表は、科 目の力もつけつつ、防災教育にもなっており、すごいと思った。またその科目を学ぶ意味づけにもなっている と感じた。/自分で作ってみての感想は、防災教育は何も特別のことでなく、日頃からできることだと感じた。

・学部卒院生 小学校志望 「防災教育」と言われてしまうと,難しいイメージを受けるが,日常的な教育活動のスパイス・ふりかけとして捉えることができれば,そう難しいものではなく,むしろ楽しんでできるのではないかと感じた。/とくに今回のスライドは楽しんで作ることができたし,他の方々も楽しみながら作っていたことが伝わってきた。「どう楽しい授業を作ろうかな」という気持ちで作ると,ここも調べなければという意欲が次々と湧いてきて,子どももこういう気持ちになるのかもしれないと感じた。

・学部卒院生 小学校志望 自分では思いつかなかったような考え方がポンポン出てきてひじょうに勉強になった。多校種にわたる学びの有効性であると考える。[とくに特支,中学数学,高校古典に言及,略]/防災とは無関係のように思われていた分野でも防災を取り入れられること、教科横断の柱として防災が位置づけられると実感した。/全体を通して感じたことだが、楽しんで防災を考えるといいアイデアが出るということである。楽しむことが一番大切である。

・現職院生 中学校英語 防災は大切なことであるのは分かっているが,目の前の忙しさの毎日で,起きる可 能性の低い地震や災害の準備,心構えの優先順位は下がってしまう。/〇〇中 [勤務校] の計画(防災マニュ アル)は、おそらく 3.11 後に改められた。しかし(作成した先生も異動して)その情熱までは引き継がれる のが難しいことが分かる。/日々の授業にふりかけ・スパイスの方が,使ってみる気持ちになるのではないか, と思いました。来年度現任校ではそんな意識で無理せず「おもしろくて楽しい!」スパイス・ふりかけをでき ることから試してみたいと思います。

・現職院生 小学校 防災教育の視点を持つことで,さまざまな教科領域の授業に防災教育を盛り込んでいけ ることを実感しました。まさに「ふりかけ」「スパイス」だと思いました。カリ・マネにぴったりだと思いま した。/防災マニュアルのない△△小 [勤務校,受講生が存在を知らない] にとって,がっちり作ってある学 校があることを知り,意識を高くもたなければと思いました。××小の取組がとても参考になり,△△小でも 取り入れていきたいと考えました。/今まで現場ですごしてきた自分から,防災への意識の高まりは確実にあ ったと思います。今後現場に戻ったら,「ふりかけ」方式で防災教育を取り入れていきたいと思います。

・現職院生 小学校 授業中「物事を多面的にとらえることの大切さ」を伝えてきた(つもりだった)が,1 つの教材を防災という面から切り取る可能性の大きさを改めて感じた。/マニュアルも,松からではなく梅か ら3年計画で作るとか,作って満足しないで訓練で活用しながら見直し,修正していくといった視点をもらう ことができた。/後期は,前期の学びも含めて,いろいろなところで繋がってきておもしろいです。防災も「ま さに」で,カリキュラム,総合,ファシリテーション等々,現場でも,職員,子ども,地域が繋がる実践を楽 しみたいと思います。わくわくです。 本研究科では、2015年5~7月、第1~6期修了生123名のうち住所が把握できた115名を対象に、修了生アンケートを実施し、有効回答80(学部卒34,現職46,回答率約70%)を得た。 そのなかで、本授業科目に関して以下のような結果、回答を得た。教職大学院で学んだことによってスキルアップしたと思える領域・事柄として、学校の安全・防災対策を挙げた修了生は、 学部卒4(12%)、現職5(11%)あった。また、スキルアップに役だった授業科目に挙げた修 了生が、6(学部卒1、現職5、うち1は全授業科目と回答)であった。さらに、スキルアップ したと実感できた具体的なエピソードとして、「学校の防災対策について、校務分掌総務部で防 災担当として避難訓練を実施したり備蓄食の整備を行ったこと(現職)」、「防災対応、教育相談、 校内研究に関して学んだことを実践し学校全体の教育課程を見渡すことができるようになった (現職)」が得られた。(本段落は、藤岡(2016)に基づく。)

4. おわりに

以上から、現況を以下のようにまとめることができよう。

地域教育文化学部「教員になるための学校防災の基礎」は、必修科目として2年(選択科目 段階を入れて4年)の実績を有するものの、いまだ手探り状態と言わなければならない。とく に地球科学的内容その教え方について、改善を重ねていかなければならない。

教育実践研究科(教職大学院)「学校の安全と防災教育」については、本授業を必修科目とし て開講してきたことは、ある程度の成果があったといえよう。多くはないが、修了生から問合 せが来たり、依頼によって筆者が訪問して授業や教員研修をしたりということもある。

東日本大震災から時間経過が進むに合わせて、大震災および当時の学校やその後について学 ぶことを、より充実すべきと感じている。このうち大学院については、従来の発表会形式から 学生同士の話し合いを含む形式に変更することも考えられる。受講生が触れる事例数は少なく なるが、より深く把握できると期待できる。とくに大震災時に子どもだった学部卒院生にとっ て当時既に学校現場にいた現職院生から得られる情報は大きな力になることも期待できる。さ らに、研究科設置=本授業開講 10 年になるため、本授業や学校防災に関して修了生対象の調査 をすべき時期であると考える。以上、今後の課題としたい。

謝辞 山形地方気象台(中澤博司台長)の上野純一氏,阿部修嗣氏,福田武夫氏,鈴木崇氏,山形市立第二小 学校齋藤英敏校長先生には,無償で講義を提供していただいた。藤岡久美子氏には修了生アンケートについて 情報提供をいただいた。各氏に厚く感謝申し上げる。

文献

安全教育学会編 2014 『東日本大震災における学校等の被害と対応に関するヒアリング調査記録集 増補第 四版』

藤岡久美子 2016 「修了生に関する取り組み」報告2 教職大学院での学びは役立ったか-山形大学大学院 教育実践研究科修了生アンケートの分析-.山形大学大学院教育実践研究科年報,8,302-306.

村山良之 2016 山形大学地域教育文化学部における防災教育-これまでの実績と学部改組への取組-. 東北地 域災害科学研究, 53, 223-228.

東日本大震災被災地における復興事業完了後の津波避難訓練の取り組み -2018 年福島県いわき市薄磯区の事例-*

東北大学災害科学国際	研究所	杉安	1 和也
東北大学電気通信研究	所	髙橋	う 秀幸
東北大学電気通信研究	所	横田	信英
東北大学大学院		片山	│ 健太
東北大学	Garcia	Fry	Martin
福島工業高等専門学校		橘	i 一光
株式会社空むすび	기	、野寺	清美
株式会社空むすび		菊地	1 弘幸

1. はじめに

福島県いわき市薄磯区は、東日本大震災の際 に同市内では最大の 115 名の死者(関連死含む) をだし,防潮堤(防災緑地)の整備,居住地の 高台移転を含む震災復興土地区画整理事業が実 施された地域である。同事業におけるハード面 整備は震災メモリアル施設の建設を除き、2018 年4月1日をもって完了し、現在は道路ネット ワーク・避難場所としても使用される集会所や 学校等の公共施設も完成形の状態で使用可能と なった。これは、暫定的な避難経路・避難場所 によって運用せざるを得なかった地区防災計画 を、ようやく現地を歩きながら検証できる状況 に至ったことを意味している (写真1)。 筆者ら は,薄磯区会・薄磯区復興協議会・消防団と連 携しながら、2017年度より同地区の津波避難訓 練の企画運営支援を行っている¹⁾。本稿はその 2年目にあたる 2018年10月21日に同地区にて 開催した津波避難訓練について、報告を行うも のである。

2. 訓練の方針

2018年における訓練では、「午前8時30分に 地震が発生し、大津波警報が発令され、30分後 (午前9時)には津波が到達する」という想定 のもと、「約10-15分間での避難完了」を目標と した。この10-15分間という避難目標時間の設 定は、各地区の避難場所までの移動距離が250m から600m程の範囲であり、地震発生後、自宅

写真1 福島県いわき市薄磯区全景 (2018 年 10 月 筆者ら撮影)

図1 2018 年度 薄磯区避難訓練の概要図

* Action of the evacuation drills of the post recovery project from 2011 Great East Japan Earthquake –Case study at 2018 usiso iwaki city fukushima- by Kazuya Sugiyasu, Hideyuki Takahashi, Nobuhide Yokota, Kenta Katayama, Garcia Fry Martin, Ikkoh Tachibana, Kiyomi Onodera and Hiroyuki Kikuchi

等から 500m 徒歩避難した場合の所要時間が約 10 分間とされること から逆算した設定である²⁾。薄磯区は,2016 年 11 月 22 日に発生し た福島県沖での地震時の避難状況を踏まえて,逃げ遅れの確認見回 り時間の短縮のため,住民が自宅から避難する場合には玄関に「避 難済みサイン」を掲示するという地区独自のルールを設けている。 今回はこの避難済みサインの掲示(図 2),新たに使用可能となった 避難場所までの避難所要時間の確認(自動車避難を含む),避難後の 地区内での情報伝達, 車椅子利用の身体障害者や観光客を想定した 沿岸部から避難対応, ドローンを活用した沿岸部の逃げ遅れ(残存 者)の確認,以上の5点を訓練によって確認することとした。なお, 薄磯区内での各地区の避難目標地点は下記の4パターンに分類され る。図1はその避難経路を示したものである。

図2「避難済みサイン」

①震災以前からの残存住宅地(小塚・南作地区)からは、最大 600m ほど離れた津波避難場所 に指定されている豊間中学校に徒歩避難する。

②震災後に整備された高台移転地(薄磯2丁目)からは、安否確認のため、同地区内にある薄 磯集会所に集合する。

③震災後に整備された災害公営住宅(薄磯団地 ※津波避難ビルにも指定)からは,3階以上に 避難,もしくは約300m離れた高台へ徒歩もしくは自動車で避難する。

④海岸(薄磯交流多目的広場駐車場)からは、身体障害者や観光客を誘導しつつ、防災緑地を 越えて、高台に徒歩避難する(直線距離は約250mだが、スロープの場合は約450mとなる)。

3. 各地の避難の様子と昨年度との比較

前述の方針に基づき実施した本年度(2018年10月21日開催)の訓練結果を,昨年度(2017年9月24日開催)での訓練結果と比較しながら以下に示す。

(1).徒歩避難の様子:

小塚・南作地区では、避難場所から最遠に居住する住民(区役員)が、消防団とともに逃げ 遅れを確認しつつ、避難完了後、区長へ電話で避難人数を報告するという流れとなった。 <u>避難</u> 時間は約15分(昨年15分)であった。同地区は昨年度から特段の避難経路変更・人口変動が 生じていないため、避難時間についても差異はみられなかった。

<u>災害公営住宅</u>では,住民の避難後,消防団や隣組長らが各棟の避難状況を確認後,高台の集 会所に向かい,区長へ直接報告するという流れとなった(※実際の災害時には,消防団や隣組 長らや歩けない住民は,各棟の3階以上に避難し,電話報告をすることとなる)。<u>避難時間は 約23分(昨年45分)</u>であった。この23分という避難時間が,今回の避難訓練での最長所要 時間となった。昨年度の避難時間からの大幅な短縮がみられるが,これは災害公営住宅自体の 住民数が昨年度より減少していることと,明確な訓練の終了タイミングを示していなかった昨 年度から,各隣組長からの報告をもって終了とした今回の訓練のシナリオ変更による影響が大 きいものと考える。

<u>海岸(薄磯交流多目的広場駐車場)</u>からの避難は,住民の誘導に従い,身体障害者役を介助 者が車椅子で運搬しつつ,車椅子が通行可能な道路・スロープ・防災緑地を経由して,高台ま での<u>避難(移動)時間は約6分</u>であった。この訓練では,身体障害者役は事前に車椅子に乗り, 介助者も住民もすぐ側にいる状況で訓練に参加しているため,避難行動を開始するまでの準備 時間はほぼ皆無である。なお事前の試走では,同じ経路の避難で移動時間は約8分30秒であ り,昨年は徒歩避難で約7分の移動時間が必要であった。このため訓練時でのこの避難時間は, 介助者がかなり急いで行動した場合の参考値で あることを添えておく。この他に,避難途中, 防災緑地の前に敷設された車道と歩道を分断す る縁石が,車椅子移動の支障になるといった課 題が確認された。この訓練時の計測結果の他に, 訓練開始前に地区内の7経路を車椅子で試走し た結果,<u>車椅子での平均避難所要時間は8.8分</u> (最短7.3分・最長11分)となった(図3)。

(2).自動車避難の様子:自動車での避難車両数は, 昨年度は33台であったが今年度は11台へと大 きく減少に転じた。これは主たる自動車避難需 要者である災害公営住宅の住民が,高台地区や 他の地域への転出が昨年より進行したためと考 えられる。一方で,昨年は誘導係からの指示も あって,避難先である高台地区内に分散して車 両を駐車できていたのに対して,今年度は集合 場所としていた集会所周辺への路肩駐車が集中 し,巡回する消防車両の通行に支障が生じてい た(図4)。今後,移転による新築住居が増える こともあり,災害時の駐車ルールの見直し・徹 底が必要となるだろう。

(3).ドローンによる逃げ遅れ確認の様子: 今回の避難訓練では,逃げ遅れ確認を行 うドローンを2台(DIJ社製Inspirelお よび Phantom4)運用し,高台から死角 となる約250m先の防災緑地の向こう側 (多目的広場駐車場および海岸)の様子 を観測した。1台は操縦難易度の低い高 台上空を垂直飛行し,残りの1台は,電 線や住宅等への配慮が必要なため,操縦 難易度が高くなる水平飛行での観測(※ 高台から海岸方面へ移動)を試みた。結 果としてはどちらのアプローチでも駐車 場・海岸に残存する車両・人々を十分に 視認可能なレベルで観測が可能であった

(写真2,3)。ただし水平飛行し,現地 の様子を直接観測した方が解像度は高く, 残存者側からもドローンの存在を飛行音 と目視で確認でき,避難の注意喚起を施 せる可能性がある。また,垂直飛行の場 合,防災緑地と多目的広場の観測には支 障はないが,防潮堤から海岸までの間に 生じる死角の範囲が広くなるため,観測

図3 車椅子での避難時間(事前の試走結果)

写真2 高台からのドローンによる垂直飛行観測

写真3 ドローンによる水平飛行観測

精度を上げる(死角を狭める)という観点では水平飛行で現地を観測することがより望ましい といえる。

4. 訓練後の総括

最終的に今年度の訓練には 126名が参加(昨年145名)し,地震が発生してからの平均での 避難開始時間は4.4分(昨年3.4分)と微増する一方,平均での避難完了時間は11.5分(昨年 12分),避難を開始してからの避難所要時間は7分(昨年8.6分)と,高台移転が進んだこと で短縮された。この訓練前に,筆者らは各地から車椅子で避難した場合の避難所要時間を計測 しており,車椅子での平均避難所要時間は8.8分(最短7.3分・最長11分)であった。これら の数値を参考に,訓練当日に,振り返り事項として「本地区での避難所までの移動時間は約10 分必要」であること,「避難目標時間を15分とる場合,遅くとも5分以内には自宅を出発(避 難を開始)する必要がある」という『5分以内に出発・移動時間は10分必要』という地域胸中 の時間感覚を共有してもらうことを本訓練での総括とした。今後,この結果をもとに具体的な 地区防災計画を検討していく予定である。

謝 辞

本研究の一部は文部科学省リスクコミュニケーションのモデル形成事業(学協会型)による地 域安全学会の取組み「行政・住民専門家の協働による災害リスク等低減を目的とした双方向リ スクコミュニケーションのモデル形成事業」,および平成30年度東北大学若手研究者アンサン ブルグラント第2ステージ「IoT 機器を活用した人と環境調和型の防災・減災機能とジオデザ インに関する共同研究」によるものである。記して御礼申し上げます。

参考文献

- 1) 杉安和也, 班目佳小里, 松本行真 2016 年福島県沖地震津波時における福島県いわき市内沿 岸自治会の避難状況とその後の津波避難施策の検討, 東北地域災害科学研究 No.54, p263-266
- 総務省消防庁 第2章 市町村における津波避難計画策定指針,津波避難対策推進マニュア ル検討会 http://www.fdma.go.jp/neuter/about/shingi_kento/h24/tsunami_hinan/houkokusho/p02.pdf 最終閲覧日 2019 年1月15日

火災時における避難リスクの認知向上を目指した屋内濃煙体験の提案*

東北大学工学部・工学研究科技術部 渡邊 武

東北大学災害科学国際研究所 杉安和也

東北大学大学院·工学研究科 小林 光

1. はじめに

消防・防災訓練の一環として、煙体験ハウスと呼ばれる屋外テント内に安全性の高い疑似煙 を充満させ、これを通り抜けることで、火災時の煙の怖さを疑似体験させるという取り組みが 行われている(図1)。筆者らの所属する東北大学工学研究科においても、消防署より訓練機器

(屋外テント及び煙発生装置(スモークマシン))と消耗品(スモーク液)を借用・購入し,毎 年2回程度の濃煙体験訓練を実施している。しかしながら,この濃煙体験を行うには数ヶ月前 に消防署へ事前予約を入れる必要があり,屋外実施であることから雨天時には中止せざるを得 ないという運用上の課題があった。また,実際には屋内で火災に遭遇し,その煙から避難する ことが想定されるため,テント内での避難と火災建物からの避難とは状況が異なる。

この課題の解決策としては、天候の影響を受けない屋内で濃煙体験訓練を実施することが考 えられる。テントの代わりに建物のオフィスや会議室などの一室を体験スペースとすることが できれば、蛍光灯の照明や非常口標識、机や椅子などを用いた実際の部屋に近い環境を整え、 より実践的な避難を提供できる。また、スモークマシン自体も事前に調達しておけば、消防署 から物品を借用する必要も無くなり、訓練日程の調整も容易となる。

筆者らは、これらの利点から、屋外テントでは再現 が困難であった体験内容を組み込んだ火災時における 避難リスクの認知向上を目指す実践的な屋内での濃煙 体験訓練プログラムを作成するべく、2017年10月か ら改良を加えながら計3回の屋内での濃煙体験訓練を 実施した。本研究では、実施した訓練の内容について、 アンケート結果を踏まえ、実施場所の選定、条件設定 やその有用性等を検討した結果を報告する。

図1 屋外テントを用いた濃煙体験訓練

2. 屋内での濃煙体験訓練の概要

2-1. 実施場所および参加者

濃煙体験を行う部屋は,排煙窓を有し,室内の自動火災報知設備が煙感知器ではなく熱感知器(作動式スポット型)である空室とし,訓練に使用する機器が要求する1¢200V電源設備のある部屋を選定した。この結果,第1回目(2017年10月12日)の実施場所は床面積60m²,高さ3mの部屋,第2回(2018年6月15日)および第3回(2018年10月16日)は第1回の

* Proposal of dense smoking drill at indoor aimed for recognizing evacuation risks in case of fire by Takeshi Watanabe, Kazuya Sugiyasu and Hikaru Kobayashi

知見を踏まえ,短時間で煙が充満しやすいよう狭小な床面積 30m²,高さ 2.5~3m の部屋とした。 なお、訓練時には非危険物のスモーク液を使用しているが,煙を火災と認識される恐れがある ため,事前に最寄りの消防署および警務員室へ連絡し,更に,体験部屋の熱感知器や廊下の煙 感知器を誤作動しないようにカバーを施した。訓練参加者は,本学の留学生を含む学生,教職 員,研究者のうち体験を希望する者とした。実際に参加した者の多くは実施場所(東北大学工 学系総合研究棟)の入居者であり,20歳代~60歳代の男女計 73 名となった。

2-2. 使用機器

屋外の濃煙体験では、煙をあらかじめ充満させたテントに参加者が入場するが、本研究での 屋内濃煙体験では、煙の充満過程を観察してもらうため、その再現機器としてスモークマシン (Rosco 1200:図 2)と熱風発生機(竹綱製作所 TSK-11)を併用し、各々にフレキシブルダク

トを取り付けて火災時の高温の煙を再現した。スモーク液には、ほぼ無臭で滞留時間の長いク リアータイプ(ROSCO CLEAR-1)を使用した。また、煙を排出するための送風機(スイデン SFJ-300-1)、煙充満時の明るさを測定する照度計(Fuso TM-720)、更に誘導灯を模擬した PC 画 面の輝度調整に輝度計(TOPCON BM-9)と波長測定に分光器(Flame-XR1-ES)、濃煙下での 視認性確認のためにノートパソコン(TOUGHBOOK CF-C2)の液晶画面を非常口誘導灯再現の 代用(図 3)とした。また室内には実際に家具も置き、疑似的なオフィス空間を再現した。こ のほか、距離を測定するためのスケールバーや誘導棒、体験結果を記入するアンケート用紙、 スモークに対する保護具としてサージカルマスク、メガネ、軍手を用意した。

図2 スモークマシンの煙

図3 非常口誘導灯の模擬標識

2-3. 訓練内容

初回となる第1回目の屋内濃煙体験は、スモークマシン単体で濃煙を再現した。部屋の換気 は行わず、約10分ごとに参加者十数人を体験終了者と入れ替わりで入室させた。参加者へは、 入室前に濃煙下での避難方法とスモークマシンで発生させた煙について説明を行い、椅子や机 のあるオフィスからの避難方法および蓄光標識の顕著性、水平・垂直距離の視認可能範囲を体 験させた。第2回目は熱風発生機を追加し、煙と新鮮な空気が混ざる境目である中性帯の再現 を試みた。また、第1回は煙を充満させるのに時間を要したため、部屋の広さが半分の体験部 屋へ変更し、参加者8名を1班とし、約15分で班交代するようにした。さらに、濃煙下での視 認状況をより実感させるため、パソコンを用いた6色(白、青、緑、黄、橙、赤)の非常口模 擬標識、高さが異なる非常口模擬標識、床からの高さを示すスケールバーを追加し、3m 離れ た場所から見え方を測定した(図4)。この非常口標識の色の違いは、日本では緑色が使用され ている一方,海外では赤色を採用している事例もあることから,非常時に本当に見えやすい配 色サインはどれなのかを体験することを目的としている。非常口標識の設置高の違いも,現状 では扉の上部,足元の2か所が主たる設置個所となるが,どの高さが濃煙下では認知しやすい のかを体験することが目的である。第1回同様に,最初に体験部屋の煙,避難方法を含めた体 験内容を参加者へ説明し,体験後に体験結果に関する質問紙(アンケート)への記入を依頼し た。なお,本体験は窓をスクリーンで覆い,蛍光灯を点けて行った。ただし,非常口模擬標識 の視認性測定については,蛍光灯を点けた条件と点けない条件の2種類実施した。

第3回目は煙の濃度を体験者間で一定条件とするため,照度計を用いた管理を行った。また, パソコンによる非常口模擬標識の輝度も同様に統制し,実際に建屋に設置されている誘導灯と 同じ輝度に合わせた。加えて参加者には健康障害防止のために保護メガネとサージカルマスク を着用させた。事前説明の後,参加者は室内が煙で充満する過程を観察し,照度計の値を目安 にある程度煙が充満してから,非常口誘導灯を模擬したパソコン画面の見やすい高さと色,垂 直方向・水平方向の視認可能距離を確認し,最後に姿勢を低くして壁に手を当てながら出口に 向かって避難するという濃煙部屋からの避難行動を体験した(図5)。照明については自然光と 蛍光灯の2グループに分けて実施した。さらに第2回同様に、参加者へ質問紙記入を依頼した。

図4 濃煙体験部屋の平面図(第3回目)

図5 体験内容と所要時間(第3回目)

結果と考察

3-1. 訓練プログラムの検討

第1回目ではスモークマシンを単体で使用したが(図2),煙が天井まで十分に届かなかった。 そのため、サーキュレーターで上方へ風を送り込むことを試みたが、結果的には部屋全体へ煙 が拡散することとなった(図6)。また、床面積が60m²と大きかったため、図6の状態になる まで約8分の時間を要し、天井の煙が蛍光灯の光を乱反射して眩しさが増す(視認性が低下す る)ことが分かった。さらに、参加者が入室する度に廊下へ煙が流出しており、廊下の煙感知 器は何も対策していなければ鳴動していたと思われる。

第2回目は煙の温度と室温の差により、実際の火災に近い上昇気流を再現することを意図したスモークマシンと熱風発生機の併用で中性帯を作成することができた(図7は第3回目の訓練写真)。しかし、火災からの避難を考える上では、中性帯発生後の煙充満状態も体験させる必要があった。そのため、部屋をその都度換気する必要が生じ、排煙窓を開けて家庭用扇風機や

サーキュレーターで換気したところ約 15 分を要した。なお,照明の違いについては,蛍光灯 on より off の状態の方が非常口模擬標識は見やすかったという感想が複数寄せられた(図 8)。

図6 体験部屋全体に煙が拡散(第1回目) 図8 濃煙かつ照明 off での模擬標識の視認性

図7 スモークマシンと熱風発生機を用いた中性帯の再現(第3回目)

第3回目は、アンケート結果(第2回)から煙の濃度で視認性が大きく異なることが判明したため、煙濃度の管理を行った。霧の濃度測定に照度計が使用される事例¹⁾を参考に、床面の照度を測定した結果、肉眼の煙濃度と相関がある結果を得た(表1)。また、色の差を体験させるパソコンの液晶の輝度を調整し(表 2)、光の波長を測定した(図 9)。訓練の所要時間については、強力な送風機を用いたことで約半分の換気時間となり、事前説明から質問紙記入完了まで合計約20分で終わる内容となった(図 5)。

衣1 (2) (2) (2) (2) (2) (2) (2) (2) (2) (2)	、甲12 日	ux.
--	--------	-----

表2 非常口模擬標識の色と輝度

	体験内容		十名	司名	輝度	輝度差
BG	非常口模擬標識	垂直/水平距離	土巴	則巴	(cd/m^2)	(cd/m^2)
420	250	150~100	白	黒	29	29
450	250	$150 \sim 70$	青	白	4.5	24.5
400	250	180~150	緑	白	6.5	22.5
900	—	610	黄	黒	23	23
900	700	450~340	橙	白	10	19
930	580	450~310	赤	白	6	23
890	570	390~280	誘導灯白	—	32	—
860	570	405~290	誘導棒 LE	ED —	62800	_
	BG 420 450 900 900 930 890 860	体験内容 BG 非常口模擬標識 420 250 450 250 400 250 900 - 900 700 930 580 890 570 860 570	体験内容 BG 非常口模擬標識 垂直/水平距離 420 250 150~100 450 250 150~70 400 250 180~150 900 - 610 900 580 450~340 930 580 450~310 890 570 390~280 860 570 405~290	体験内容 主色 BG 非常口模擬標識 垂直/水平距離 主色 420 250 150~100 白 450 250 150~70 青 400 250 180~150 緑 900 - 610 黄 900 580 450~340 橙 930 580 450~310 赤 890 570 390~280 誘導灯白 860 570 405~290 誘導棒 LI	体験内容 主色 副色 BG 非常口模擬標識 垂直/水平距離 主色 副色 420 250 150~100 白 黒 450 250 150~70 青 白 400 250 180~150 緑 白 900 - 610 黄 黒 900 580 450~340 橙 白 930 580 450~310 赤 白 890 570 390~280 誘導炸白 一 860 570 405~290 誘導棒 LED –	体験内容 主色 輝度 (cd/m ²) BG 非常口模擬標識 垂直/水平距離 主色 副色 輝度 (cd/m ²) 420 250 150~100 白 黒 29 450 250 150~70 青 白 4.5 400 250 180~150 緑 白 6.5 900 - 610 黄 黒 23 900 700 450~340 橙 白 10 930 580 450~310 赤 白 6 890 570 390~280 誘導灯白 32 860 570 405~290 誘導棒 LED 62800

※輝度差は主色と副色の輝度の差

図9 非常口模擬標識の波長スペクトル(赤点線は明所視の標準比視感度)

第3回目の屋内濃煙体験訓練では、中性帯発生時は高さによって煙の濃度が異なることで低い姿勢で避難する理由を目で確認させ、充満後は視界が大きく奪われるため光源や音源が主な 伝達手段になることを体験させた。参加者の感想には、「煙が天井に溜まることが分かった」、 「低い姿勢で避難する理由がわかった」、「予想以上に見えないと分かった」など、濃煙下での 状況を認知できた旨を示す回答が得られた。一方で、障害物を置いて避難させることで、参加 者に避難経路を考えさせる目的もあったが、参加者からの反応は少なく(※2回目では「床の コードを整理する理由がわかった」等の回答有)、訓練全体としては、視認性の変化への関心の 方が高い結果となった。また今回は、色違いの非常口模擬標識を用いて行ったが、避難時には 非常口等の標識が見えるかどうかが重要であるため、今後、標識を視認可能な間隔(本実験結 果では水平距離 2m 前後)で配置し、濃煙体験部屋から避難させると、標識整備の大切さを強 調できる可能性がある。

3-2. 視認性に関する体験結果

上記の体験結果の評価として,第2回の2条件下での参加者29名(男17,女12,平均33歳),第3回の昼条件下での参加者24名(男17,女6,不明1,平均26歳),夜条件下での参加者20名(男16,女4,平均40歳)のアンケート回答を集計した。この結果,非常口模擬標識の高さは「上」よりも「目線の高さ」や「下方」が,色は「緑色」や「黄色」,「白色」が視認しやすい結果となった(図10,図11)。また,ほぼ同じ煙濃度では,蛍光灯の照明が点くと標識が見えない人(不可視)が増加した。視認距離は誘導棒を使用していない「垂直方向」の方が誘導棒を点滅させた「水平方向」よりも短くなった。実際に,煙放出後約4分で天井高の半分まで煙が下降していた(図7右)。高さの違う非常口模擬標識の視認性は第2回目で中段, 第3回目で下段が高くなったが,第3回目は中性帯を分かりやすく見てもらうために中性帯が 目線くらいの高さで各種実験を始めたのに対し,第2回目は図6のように部屋全体に煙が充満 した後に実験を開始していたため,煙の拡散程度で生じた差と考えられる。光の強さは光源か らの距離の2乗に反比例するため,煙濃度が均一ならば目と距離が近い中段が視認しやすいの は予想と一致する。これにより,第2回のデータは第3回より濃い煙の状況での視認性を測定 した結果と推測され,平均視認距離が短いこととも整合性がある。

次に,色ついては緑,白,黄が見やすい色となった。見やすさには,輝度差,明るさ(人間の感度),形状,動きなどの要素があるが,今回の差は輝度差と人間の感度である。年齢による 若干の感度差はあるものの,標準比視感度は555nmの黄緑色が最も感度が高く²⁾,図9でも緑 や黄,白には555nm付近の波長が含まれており,見やすい色であったと考えられる。

図 11 屋内濃煙体験における視認距離(垂直および水平方向)に関する質問紙集計結果

4. まとめ

屋内環境で火災初期-中期の煙状況を様々な道具を用いて疑似体験することは,運営面での 利点と共に,初期避難の重要性と,中期避難の困難さを理解し,そのための事前準備の意義を 認知させる上で一定の効果があると示唆できた。今後もより有効な訓練を検討していきたい。

参考文献

- 1) 桑原祐貴,藤井慎,高松衛 他:濃霧中における LED 色光の視認特性に関する研究-昼間および夜間における-,日本人間工学大会講演集,47, pp.314-315,2011
- 2) 高橋康朗, 佐川賢, 岩澤洋: 年代別の分光視感効率関数, 照明学会誌, 83, p.169, 1999

心理学を用いた災害シミュレーションの可視化手法の検討

八戸工業大学 高瀬 慎介

- (株) NHK メディアテクノロジー 斎藤 丈士
 - 東北大学災害科学国際研究所 森口 周二
- 東北大学災害科学国際研究所 寺田 賢二郎
- 東北大学災害科学国際研究所 邑本 俊亮
- 日本工営(株)先端研究開発センター 櫻庭 雅明

1. はじめに

高密度に蓄積された災害関連データと高度に発展した災害シミュレーションは、メカニズム 解明やリスク評価のためのツールという目的だけでなく、3次元可視化を通じてサイバー空間 における災害の疑似体験をも実現することが可能である.筆者らは、これまで、様々な災害シ ミュレーション結果や災害調査結果の3次元可視化コンテンツを作成し、東北大学災害科学国 際研究所に設置されている「災害科学情報の多次元統合可視化システム(以下,IMIDeS)」上 での効果的な可視化方法について検討してきた.その中で、データの質や量、およびリアリテ ィの追求だけでは人々の防災・減災意識を高めるような品質には到達しないことを痛感してお り、真の意味で防災に寄与する3次元可視化コンテンツとは、視覚を通じて人の心に訴え、そ れによって防災意識を刺激するようなものである必要があると考えてきた.それを実現するた めには、災害データやシミュレーションの専門的知識に加えて、人間の認知過程に関する知見、 およびそれに基づいて可視化コンテンツを作り出すための高い映像技術が求められる.当然な がら、単独の研究分野だけではこれを達成することは難しく、それぞれの要素技術の専門家が 防災という出口を見据えて、強固な連携体制の下でコンテンツを構築する必要がある.そこで 本研究では、災害シミュレーション、認知心理学、映像のそれぞれの専門家が集結し、人の心 に訴える可視化コンテンツの作成を試みた.

2. 可視化コンテンツの選定

本研究は、2 つの災害シミュレーション結果について検討を行った.1 つは、仙台市の建 物の地震応答シミュレーション(図1)、2 つめは、山形県月山で発生した雪崩の再現シミュレ ーション¹⁾(図2)を題材とした.図1、2 に示す可視化結果は、これまでのシミュレーション 結果の可視化方法によるものである.このデータをもとに IMIDeS により表現可能な3次元可 視化コンテンツを作成した.図3、4 に仙台市の建物の地震応答シミュレーションを、図5、6 に 雪崩の再現シミュレーションの可視化結果を示す.それぞれ視点の違いによる感じ方の影響を 調べるため、上方からの視点と下方(人が立った見ている状況を想定)からの視点の2パター ンの可視化を行っている.

Visualization method of disaster simulation using psychology by S. Takase, T. Saito, S. Moriguchi, K. Terada, T. Muramoto, M. Sakuraba

図1:仙台市の建物の地震応答シミュレーション

再現シミュレーション

図2:月山で発生した雪崩の

図3:仙台市の建物応答シミュレーション可視化結果(上方視点)

図4:仙台市の建物応答シミュレーション可視化結果(下方視点)

図5:雪崩の再現シミュレーション可視化結果(上方視点)

図6:雪崩の再現シミュレーション可視化結果(下方視点)

3. SD 法を用いた可視化コンテンツに対する印象評定実験の結果と考察

可視化方法による違いが人の心にどのように影響を及ぼすか調べるため,可視化コンテンツ を8種類(災害2種類(雪崩・地震)×次元2種類(2D・3D)×視点2種類(上方・下方)用 意し,1グループ6名で8つのグループに対して順番にコンテンツを上映して,上映ごとに20 個の形容詞対(表1を参照)を用いたSD(Semantic Differential)法による印象評定実験を 行った.コンテンツの再生順による影響も考慮し,各グループのコンテンツの再生順はバラン スをとっている.

実験参加者 48 名の 8 種類の映像それぞれ対する 20 個の形容詞対への回答(合計 384 個)を 対象として因子分析(最尤法,プロマックス回転)を行った.分析には,HAD16²⁾を用いた。 その結果,4 因子構造を得た(表1).各因子のω係数から,信頼係数の高さを確認した(F1: ω =.937, F2: ω =.790, F3: ω =.752, F4: ω =.781).また,適合度指標の値は, χ ²= 347.55, p=.000, df=116, CFI=.942, RMSEA=.074 と十分な値であった.表1の各因子に含まれる質問項目の内容 から,それぞれの因子を,F1:臨場感,F2:恐怖感,F3:現実味,F4:複雑性と命名した.

各因子に含まれる評定項目について、逆転項目については逆転処理を行ったうえで、平均得 点を算出した.災害別の4因子それぞれの平均得点を図7~図14に示す.それぞれについて、 次元(2D・3D)×視点(上方・下方)の2要因分散分析を行った.なお、F1のみ、欠測値が あったため、F1に関わるデータのみリストワイズ除去した.

図 7 に示した「雪崩の臨場感」については、次元と視点の主効果が有意であった(F (1, 46)=17.16, F (1, 46)=112.07, ps<.01). 3D のほうが 2D よりも平均値が高く、下方のほうが上方よりも平均値が高かった.2 要因の交互作用は有意ではなかった.図8に示した「地震の臨場感」についても、次元と視点の主効果が有意であった(F (1, 46)=44.42, F (1, 46)=8.51, ps<.01). 3D のほうが 2D よりも平均値が高く、下方のほうが上方よりも平均値が高かった.2 要因の交互作用は有意ではなかった.

図 9 に示した「雪崩の恐怖感」については、次元の主効果は有意でなかったが、視点の主効 果が有意であった (F(1, 47)=79.89, p<.01).下方のほうが上方よりも平均値が高かった.2要因 の交互作用は有意ではなかった.図 10 に示した「地震の恐怖感」については、次元と視点の主 効果が有意であり (F(1, 47)=9.18, F(1, 47)=8.81, ps<.01)、交互作用も有意であった (F(1, 47)=8.17, p<.01).交互作用が有意であったので単純主効果検定 (Bonferroni 法, $\alpha=.05$)を行っ たところ、上方においては 3D のほうが 2D よりも平均値が有意に高かったが、下方においては 2D と 3D の間に有意差は認められなかった.また、2D においては下方のほうが上方よりも平 均値が有意に高かったが、3D においては上方と下方との間に有意差は認められなかった.

図 11 に示した「雪崩の現実味」については、次元の主効果のみ有意であり(F(1,47)=4.63, p<.01), 3D のほうが 2D よりも平均値が高かった.図 12 に示した「地震の現実味」については、 次元の主効果(F(1,47)=12.18, p<.01)と交互作用(F(1,47)=5.45, p<.05)が有意であった.単 純主効果検定の結果,上方においては 3D のほうが 2D よりも平均値が高かったが、下方におい ては、2D と 3D の間に有意差は認められなかった.一方、次元ごとの分析では、いずれにおい ても視点の違いによる有意差は認められなかった.

図 13 に示した「雪崩の複雑性」については、次元と視点の主効果が有意であった(F(1,

46)=10.39, F (1, 46)=10.94, ps<.01). 3D のほうが 2D よりも平均値が高く,下方のほうが上方よ りも平均値が高かった.2 要因の交互作用は有意ではなかった.図 14 に示した「地震の複雑性」 については,次元と視点の主効果が有意であった (F (1, 46)=11.91, F (1, 46)=8.40, ps<.01). 3D のほうが 2D よりも平均値が高く,上方のほうが下方よりも平均値が高かった.2 要因の交互作 用は有意ではなかった.

以上より,可視化方法により人に与える影響の違いがあることがわかった.災害の種類によって影響力の表れ方の強さに多少の違いはあるものの,おおむね3Dのほうが2Dよりも臨場感,恐怖感,現実味,複雑性が高く評価され,下方のほうが上方よりも臨場感,恐怖感,現実味が高く評価されることが明らかとなった.また,今回抽出された4つの因子は,今後より効果的な可視化コンテンツを作成する上で,考慮すべき視点となるものと考えられる.

項目番号	質問項目	Fl	F2	F3	F4
item9	印象的な - 印象的でない	.891	.156	.066	046
item5	派手な – 地味な	.874	.067	.031	.028
item3	興奮した - 沈黙した	.809	067	036	.058
item8	個性的な - 平凡な	.730	.100	070	094
item7	迫力のある - 迫力のない	.718	167	.059	.024
iteml	動的な - 静的な	.679	051	026	.090
item2	速い ー 遅い	.620	019	121	027
item4	感情的な - 理性的な	.608	056	129	.018
item15	臨場感のある - 臨場感のない	.591	197	.186	.048
item18	激しい ー 穏やかな	.536	384	045	.118
item12	面白い - つまらない	.476	.160	.179	327
item6	ゆるんだ - 緊張した	350	.348	.062	.179
item16	安全な 一 危険な	.002	.782	076	.044
item17	怖い 一 安心な	.099	703	.006	037
item19	わかりやすい ー わかりにくい	101	.037	.913	.057
item20	はっきりした - ぼんやりした	.033	.041	.772	001
item14	現実的な - 非現実的な	008	160	.524	013
item13	人工的な 一 自然な	.120	.067	475	.046
itemll	表面的 ー 深みのある	.116	.072	.005	.894
item10	単純な 一 複雑な	071	.027	.014	.695
	因子間相関		F2	F3	F4
	F1		662	.540	565
	F2			336	.336
					449

表1:因子パターン行列(最尤法,プロマックス回転)

4. おわりに

本研究では、災害シミュレーション・認知心理学・映像のそれぞれの知見や技術を融合して、 災害シミュレーションの可視化コンテンツを作成し、心理学で用いられている手法を用いて可 視化の印象評定実験を行った. SD 法を用いた印象評定実験より、今回用いたコンテンツでは 4つの因子(臨場感・恐怖感,現実味・複雑性)に分類することができた.また、3次元可視 化や視点のアングルにより災害シミュレーション結果の印象が変化することがわかった.

今後の課題として,防災教育に用いる場合,どのような因子の影響が大きいのか調べ,防災 教育に役立つ可視化手法の検討を行う予定である.

参考文献

 山口裕矢,高瀬慎介,森口周二,寺田賢二郎,小田憲一,上石勲:非ニュートン流体モデル を用いた雪崩の3次元非構造有限要素解析, Transactions of JSCES, Paper No.20170011,2017
 清水裕士:フリーの統計分析ソフト HAD:機能の紹介と統計学習・教育,研究実践における利用方法の提案.『メディア・情報・コミュニケーション研究』,第1号,59-73.,2016

謝辞:本研究は,平成 29 年度東北大学災害科学国際研究所リソースを活用した共同利用研究 助成を受けたものです.ここに記して,感謝を表します.

地区防災計画制度の普及による地域防災力の向上を目指して

岩手大学農学部 井良沢道也 国土交通省新庄河川事務所 小原孝一 林野庁東大雪森林管理支 署平門由佳子

1. はじめに

平成 25 年の災害対策基本法の改正で,地区居住者等による自発的な防災活動に関する計画 制度である「地区防災計画制度」が創設された。しかし,本制度の創設から3年で(平成 29 年 3月時点),計画が策定済みの市町村は全国で3地区のみとなっており,普及が進んでいないの が現状である。そこで,地区防災計画に向けた活動が行われている全国及び岩手県内の事例に おいて,聞き取り調査等を行い,制度の普及への課題について検討した。

2. 地区防災計画制度とは

地区防災計画とは「市町村の一定の地区内の居住者及び事業者(地区居住者等)による自発 的な防災活動に関するもの」とされている。つまり,地区住民自らがその地区の防災計画を立 て行政に提案するというボトムアップ型の計画となっている。

図1 地区防災計画制度 作成のステップ

都道府県や市町村などの地方公共団体には「地域防災計画」というものがあるが、これは災 害時に行政がどのように動き、どのような対策を行っていくか、日頃からどのような備えをし ておくかを定めたものであり、その地域住民にとってはトップダウン型の計画となっている。

The spread of area disaster-prevention-planning systems aims at improvement in local disaster prevention power.

Michiya Iradsawa(iwate Univ.), kouichi Obara(Sinjyo River Office), Yukako Hirakado(Higashitaisetu Forest Office) また、細かい地区毎に対策が決められているところはほとんどない。この地区防災計画制度が 立ち上がった背景には東日本大震災がある。東日本大震災で公助の限界と共助の重要性が改め て認識され、公助と共助の連携が大きな課題となった。「公助の限界」が浮き彫りになっている ことから、災害時の対策について「地域防災計画」だけでは十分とは言えない。そのため内閣 府は平成26年4月よりこの「地区防災計画制度」を施行し、地区住民の自発的な防災活動,そ れにともなう防災意識の向上を目指し地域コミュニティにおける防災活動を推進している。地 区防災計画は地域特性に応じた計画を立てることができる。また、そこに住む地元住民などが 作成するものであるので、住民自身も改めて地域を見直しながら計画を立てることができる。 しかし、他の地域をまねており、ただのお飾りの計画になっているところも少なからずあると いう。そのようにならないよう、行政などのバックアップが必要になってくる。地区防災計画 制度はボトムアップ型の制度であるからと言って行政側が待つだけという体制では、この計画 制度はうまくいかないのではないかと思われる。行政側もこの計画制度を住民に知ってもらい、 活動を支援する体制が必要である。

3. 目的

地区防災計画を策定することは、その地区住民の命を守ることに大きな影響を与える。しかし、 普及には課題が多く、全国的にも認知度は十分ではない。西日本では南海トラフ地震などを懸 念して対策が取られるところが増えてきているが、東日本ではまだ防災意識が低い傾向にあり、 東日本大震災で大きな被害を受けた岩手県でも認知度が低い。そのため、今現在行われている 防災対策について岩手県内の地区住民、行政職員双方からの声を聞き、地区防災計画を進める うえでの課題、その解決策を探ることとした。

4. 調査方法

全国事例の調査として、地区防災計画制度のモデル地区に指定されている 44 地区の中から 新潟県長岡市、燕市、宮城県仙台市片平地区の3地区を選定し、実際に地区の住民代表者や担 当職員の方に聞き取り調査を実施し、地区防災計画策定に向けた取り組みについて取りまとめ た。また、活発な地域防災活動が行われている新潟県阿賀町、新潟県砂防課において聞き取り 調査を実施し、各地域の防災活動の特徴を整理した。さらに山形県庄内町木の沢地区において 新庄河川事務所、庄内町等が実施している住民参加のハザードマップづくりに参画し、アンケ ート調査を行い、活動の効果を考察した。一方、岩手県内事例の調査として、行政側に岩手県 内の市町村役場防災担当者への聞き取り調査 (5 市町村)及びメールによるアンケート調査(全 33 市町村)、地区住民側に防災リーダーへの聞き取り調査 (5 地区)、防災に関するワークショ ップの開催(八幡平市寺田地区)(参加者:約40人)を行った。

5. 調査結果

調査を行った地域では、地域の特性を考慮した活動が熱心に行われていることが分かった。 仙台市片平地区は防災活動をまちづくりの一環として捉えている点が特徴的である。地域の小 学校や大学と連携し、まちづくりを主体として防災を織り込んだ活動を行うことで、子供や若 者が積極的に参加できる工夫がされている(図1)。新潟県での調査においては、土砂災害前ぶ れ注意情報やながおか土砂災害Dメールなど(図2)の情報発信がされていることがわかった。 一方で活動が沈滞化している地区もあった。地域防災力の向上を目指す上で重要なのは、地域 住民同士の交流を深め、自分の地域をより深く知ることであり、地域活動のきっかけとして地 区防災計画が機能することが期待される。

図1 宝探しゲーム

図2ながおか土砂災害Dメール

また岩手県内全33市町村へのアンケート調査の結果から,行政側の課題として3つの課題 があげられた。①職員の不足:聞き取り調査およびアンケート調査どちらでも多く聞かれた課 題である。他部署と連携するなど市町村全体で取り組む姿勢が必要となってくる。②制度の理 解度の低さ:市町村職員,地区住民双方に言える課題である。制度自体だけでなく自助・共助 の意識も不十分な地域がある。地区の防災組織の活動の活性化など防災意識の向上が急がれる。 ③手続きなどの簡易化:地区防災計画は策定までに多くの会議や書類作成が必要であり,職員 不足が深刻な現状では取り組みにくい。手続きや書類の簡易化が本制度普及の一助となりうる (図3,4,5,6,7)。地区住民側の課題として3つの課題があげられた。①過疎化,高齢化: 特に農山村地域では深刻な問題である。高齢者をうまく活用する,PTA などの他組織を活用す るなど人材確保に工夫が必要である。②次世代育成:現在の防災リーダーは活動的であっても, その人の次を担う人材がいないことが聞き取り調査で浮き彫りとなった。市町村の防災リーダ 一育成講座などを活用して次世代育成に努めることが急がれる。③活動内容の工夫:若い世代

などは参加から遠ざかってしまうので, 訓練内容などの工夫が必要である。 地区防災計画の普及活動の有無 (n=33 単一解答) (n=33 単一解答)

図3 計画の普及活動有無

図4 今後の普及活動への動き

図5 地区防災計画制度の評価(n=33 単一解答)

図6 地区防災計画制度の評価点(n-33 複数回答)

a. 防災に関しての意見交換や訓練を行うことで,住民の自助意識が芽生える。b. 住民自らが計 画を作成することで,共助意識が向上する。c. 災害時に行う行動を事前確認することができ, 災害対応力が向上する。d. 自治会(自主防災組織)の防災意識が向上し,地区内行動が具体的に 提示できる。e. 地区住民の安心感が増す。f. 自治体の防災担当者の交代に影響されず継続的に 活動が持続する。g. 普段からの連携により,災害発生時には行政等関係機関と地区住民との連 携が発揮される。h. その他

a 過疎化 b. 人口増加 c. 高齢化 d. 自主防災組織の組織率の低迷 e. 自主防災組織の形骸化 f. 地域 コミュニティの活動の停滞 g. 市町村職員の不足 h. その他

6. まとめと提言

これらの結果から、今後、岩手県内及び全国において地区防災計画の普及、地域の防災力の向上を目指していくための方策を以下に提言する。

(1) 行政側の課題

市町村の防災担当職員への聞き取り調査,アンケート調査の結果より,地区住民を支援する 側の行政にもいくつか課題があることが分かった。まず,多くの声が上がっていたものが職員 不足の問題である。市町村職員の防災担当者は消防や防犯などの仕事と兼務していることが多 く,防災ばかりに多くの時間をとれないという。これには他部署との連携によりうまくいった 例がある。黒潮町「防災地域担当制度」により,町職員全体が防災担当(普通の業務と兼務) として働いている。これは極端な例ではある。しかし,黒潮町では南海トラフ地震が起こった 場合,津波が34.4m押し寄せるとの調査結果がわかり,防災に対しての対応が急務となったた め,町全体で防災対策の強化に励んでいる。また,行政側の負担を軽減するということを考え れば,「公助」に頼りきりではなく自助や共助での地域防災力の向上を促すということも負担を 和らげる一助になるのではないだろうか。行政としての支援の在り方を見直す動きも出てきて いる。行政は公的な機関であるため,公平でなくてはならない。そのため特定の地区に多くの 支援をすることができない。まずは行政がどのような支援を行うことができるのか(補助金の 給付,アドバイザーの派遣など)を住民に知ってもらうということが重要になってくる。いき なり「共助」におまかせといって突き放すのではなく「よりそう」という体制が望まれる。

(2)地域住民側の課題

各地区で地区防災計画を作成するには、まず、地区の防災組織を確立しなければならない。 そのため、初めに地区の防災組織体制の課題とそれに対する考察を述べる。これからの日本で 高齢化は避けられない。そのため、「高齢化」を生かした地域コミュニティの形成が地域の活性 化につながると考える。岩手県陸前高田市長部地区のように高齢化を問題とせず、活用すると いうことは一つの良い例なのではないだろうか。65歳などで退職しても元気な人は多く、地域 で何か役割を与えて「生きがい」を与えることにより、お年寄りの方々の元気につながる。ま た、長年住んでいる人であれば、より地域を知っているため、その「知識」を生かすことがで きる。地域コミュニティの問題として,近年若い世代の参加率の低下があげられる。仕事など で忙しい、地域との関わり合いを避けるなど様々な理由はあるが、いざ災害となった時に頼り になるのはやはり若い世代である。そのため、若い世代の方々をどう地域コミュニティに取り 込むかが課題となる。これにはまず、その子供たちからコミュニティ活動への参加をさせると いうことがあげられる。学校を活用する(小中高大すべて),特に小学校区などだと地域に関わ りを持ちやすい。また、PTA などの役員を活用するという例もある(花巻市松園4区)。様々な 地区に聞き取り調査をし、現在の防災リーダーは大変活発に活動しており、地区住民からの信 頼も厚い人が多いことが分かった。しかし、その方々の次世代がいないという地域が多くみら れた。世代交代により今までの地域防災活動がストップしてしまった地域もある(燕市笈ケ島 地区)。次世代育成として、まずは地区の防災組織に若い世代を取り込まなければならない。パ ソコンなどのデータ管理をお願いするなど、高齢者では難しい仕事をやってもらうなど若い世 代を生かした組織体制が望まれる。また、より防災に詳しい人材育成として市町村などが行う 防災リーダー育成の講座への参加援助などが挙げられる。

(3) 地区防災計画制度,防災活動の課題

地区防災計画制度の一つの大きな課題として手続きに膨大な手間と時間がかかるということ があげられる。市町村職員に行ったアンケート結果からも地区防災計画制度導入の課題として 多くあげられた。また,現在策定されているものは膨大な資料で構成されているものが多く, これから策定を考えている住民たちにとっては大きな壁となっている。そのため,手続きの簡 易化,および策定される計画内容の簡素化が望まれる。内閣府へ聞き取り調査を行った際,現 在策定されている者でも肝心な避難場所や避難するタイミングなどが書かれていないものがあ ると述べていた。そのため,行政側からある程度どのような内容を取り入れて欲しいかなどを 具体的に示すということを検討してみてもよいかもしれない。また,策定までの手続きなどを サポートするスタッフの派遣(岩手県では地域防災サポーターなどがいる)を行うなどの工夫 が必要である。スタッフの派遣に関しては,計画作りが最終目標となってはいけないため,そ の後の活動を行う際にもサポーターとして入ってもらうなど継続的な支援が必要である。

「防災だけ」ではなく「防災にも」強いまちづくりを行っていくことが今後の地域防災を進めていくうえで重要になる。日常に何げなく取り入れ、まちの魅力や日常生活と防災が両立することが望まれる。地域のイベントに防災を組み込むことや、また観光として防災を取り込むなど人々が関わりやすくなる工夫が必要である。

本調査は平成 29 年度岩手県県民協働型評価推進事業の助成を受けて実施した。調査実施に あたり、岩手県政策推進室,総合防災室,仙台市及び新潟県,岩手県の市町村防災担当者なら びに防災リーダーの皆様に御礼申し上げます。また,助言を頂きました国土防災技術(株)の皆 様方に厚く謝意を表します。

参考文献:平成 29 年度岩手県県民協働型評価推進事業「地区防災計画制度の普及による地域 防災力の強化方策の検討」(http://www.pref.iwate.jp/seisaku/hyouka/kenmin/060577.html) 日本自然災害学会東北支部役員(平成30年度)

支	部	長	風	間	基	樹	(東北大学・工)
幹	事	長	河	井		Æ	(東北大学・工)
評	議	員	片	岡	俊	_	(弘前大学・理工)
			松	冨	英	夫	(秋田大学・理工)
			村	山	良	之	(山形大学・教育)
			山	本	英	和	(岩手大学・理工)
			千	葉	則	行	(東北工業大学・工)
			中	村		晋	(日本大学・工)
			佐	藤		健	(東北大学・災害研)
会言	十監査	£員	飯	藤	將	之	(仙台高等専門学校)

平成 31 年 3 月 1 日 発行
東北地域災害科学研究 第 55 巻 (平成 30 年度)
編集者 自然災害研究協議会東北地区部会 部会長 風間基樹
日本自然災害学会東北支部 支部長 風間 基樹
 発行者 東北大学災害科学国際研究所 東北地区自然災害資料センター センター長 今村 文彦 〒 980-8572 仙台市青葉区荒巻字青葉 468-1 TEL 022 (752) 2099
印 刷 所 有限会社 明 倫 社 〒 983-0842 仙台市宮城野区五輪二丁目 9 - 5 TEL 022 (295) 8211