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ABSTRACT 
 Sediment transport over wave-induced ripples is a very complex phenomenon where available models 
fail to provide accurate predictions. For coastal engineering applications, the 1-DV advection-diffusion 
equation could be used with an additional parameter α related to the process of vortex shedding above 
ripples (Absi, 2010). The aim of this study is to provide simple practical analytical tools. An analytical eddy 
viscosity profile was validated by DNS data of turbulent channel flows (Absi et al., 2011). In this study, we 
will show that: (1) the period-averaged eddy viscosity in oscillatory boundary layers could be described by 
this simple analytical formulation; (2) The shape of the vertical profile is validated by period-averaged eddy 
viscosity of baseline (BSL) k-ω model (Suntoyo and Tanaka, 2009) for sinusoidal and asymmetric waves; 
(3) The vertical eddy viscosity profile depends on the wave non-linearity parameter and requires therefore a 
specific calibration.  
 
1. INTRODUCTION 

Coastal zones are of high vulnerability to natural hazards/disasters. Waves, currents and tides make 
coastal zones areas changing due to erosion and deposition of sediments. Thus, an understanding of 
sediment transport process in coastal zones is of crucial importance for accurate predictions of coast line 
evolution and sea-bed changes. However, the modeling of coastal sediment transport needs a compromise 
between two types of models: detailed mathematical models and engineering approaches. This compromise 
is imposed by on the one hand the accuracy of predictions and on the other hand the usability in practical 
applications (Absi 2011). In coastal engineering practical accurate engineering models which take into 
account the more important involved physics, are needed.  

In the engineering approach, the net (averaged over the wave period) total sediment transport is obtained 
as the sum of the net bed load and net suspended load transport rates (Fredsoe and Deigaard 1992). For 
suspended load, the net sand transport is defined as the sum of the net current-related and the net wave-
related transport components. The wave-related suspended transport component requires computation of the 
time-averaged suspended sediment concentration (SSC) profile and its integration in the vertical direction 
(van Rijn 2007). Computation of SSC needs the sediment diffusivity sε which is related to the eddy 

viscosity tν by the parameter β (i.e., the inverse of the turbulent Schmidt number).  

For moderate wave conditions and/or deep water, wave ripples can be formed on the sea bottom. If the 
ripples are relatively steep (ηr/λr ≥ 0.12, where ηr is the ripple height and λr is the ripple wavelength), the 
mixing close to the bed is dominated by coherent, periodic vortex structures. Above rippled beds, the mixing 
in the near bed layer is dominated by the mechanism of vortex shedding which entrains sediments.  
The aim of our study is to improve the prediction of SSC over ripples by using simple analytical tools which 
take into account the more important involved physics, for practical use in coastal engineering.  
 
2. TIME-AVERAGED CONCENTRATIONS OVER WAVE-INDUCED RIPPLES 
 Sediment diffusivity εs describes the disorganized ‘‘diffusive” process. The process of vortex formation 
and shedding at flow reversal above ripples is a relatively coherent phenomenon. The associated convective 
sediment entrainment process may also be characterized as coherent, instead of a pure disorganized 
‘‘diffusive” process represented in the classical gradient diffusion model (Thorne et al. 2002). Nielsen 
(1992) indicated that both convective and diffusive mechanisms are involved in the entrainment processes. 
In the combined convection-diffusion formulation, the steady state advection-diffusion equation is given by  

0=++ convss F
dz

dc
cw ε      (1) 



The respective terms in (1) represent downward settling, upward diffusion (given by gradient diffusion 

( )dzdcF sdiff /ε= ) and upward convection convF . The upward convection term convF  was given by Thorne et 

al. (2002) as )(0 zFcwF sconv −= , where F(z) is a function describing the probability of a particle reaching 

height z above the bed (Nielsen 1992). Thorne et al. (2009) wrote 
wwconv cwF −=  where 

ww  and 
wc are 

periodic components respectively of concentrations and vertical velocity and the overbar denotes time 
averaging. It is possible to write (1) in the form of a diffusion equation. The time-averaged (over the wave 
period) advection-diffusion equation is given therefore by (Absi 2010)  

0* =+
dz

dc
cw ss ε       (2) 

where ss εαε =*  and α is a parameter related to convective sediment entrainment process associated to the 

process of vortex shedding above ripples ( )( )cwF sconv /1/1 +=α . With the upward convection 

)(0 zFcwF sconv −= , α becomes equal to ( )( ))(/1/1 0 zFcc− , while with wwconv cwF −=  (Thorne et al., 

2009) ( )( )cwcw sww /1/1 −=α . The condition of Sheng and Hay (1995) ( ) 2.0/ <cwcw sww  shows 

therefore that when the convective transfer is very small (above low steepness ripples), 1≈α and therefore 

ss εε ≈*  (Absi, 2011). From equations (1) and (2), it is possible to write  
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and therefore ( )diffconv FF /1+=α . This equation shows that α depends on the relative importance of 

coherent vortex shedding (related to convF ) and random turbulence (related to diffF ). When diffconv FF >  

=> 1>α , while diffconv FF <<  => 1≈α and therefore ss εε ≈* . Absi (2010) proposed the following equation  

zd

dw

zd

cd s

s

s
*
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2 ln ε
ε

=       (4) 

Eq. (4) provides a link between upward concavity/convexity of concentration profiles (in semi-log plots) 

and increasing/decreasing of*sε . Increasing *
sε allows upward concave concentration profile, while 

decreasing *
sε  allows an upward convex concentration profile.  

In order to allow adequate predictions of suspended sediment transport, it is important to understand 
interaction between sediment particles and turbulence of fluid flow. The turbulent diffusion of suspended 
sediments sε  is given by  

ts νβε =       (5) 

where β  = inverse of the turbulent Schmidt number, describes the difference between diffusivity of 
momentum (diffusion of  a fluid “particle”) and diffusivity of sediment particles. It should depend on the 
particle Stokes number (Absi et al. 2011). However, for simplicity and in order to allow analytical analysis, 
we suggested a simple equation ( )δββ β /exp zCb= ; where bβ = the value of β  close to the bed and βC  



= coefficient (Absi 2010). This β (y) profile increases with z for βC  > 0 and decreases for βC  < 0. We 

used an analytical eddy viscosity given by  

δκν
z

C

t ezu
−

= *      (6) 

where u* = the friction velocity (m/s), δ = the boundary layer thickness (m), κ = the Karman constant (=0.41) 
and C a parameter =1.12 (Hsu and Jan 1998, Absi 2000, Absi 2010). Using the β -function and eddy 
viscosity (6), the sediment diffusivity is given therefore by  

sB

z

ss ezA
−

=ε      (7) 

where *uA bs κβ=  (m/s) and ( )βδ CCBs −= /  (m). Absi (2010) suggested an empirical function for α  given 

by ( )shzD /exp1 −+=α  ; where D and hs are two parameters.  

  
 
Test case: Fine and coarse sediments over rippled beds in the same flow (McFetridge and Nielsen, 
1985)  

Maximum value of the free stream velocity, wave period, mean depth of the flow, orbital amplitude or 
near-bed flow semi-excursion, mean ripple height, mean ripple wavelength, equivalent 
roughness ( )rrrsk ληη /25= , friction factor ( ) 52.0/237.0 msw akf =  (Soulsby, 1997), mean magnitude of the 

friction velocity in the wave cycle ( ) 0
5.0

* 2/763.0 Ufu w= (Davies, 1986) and σδ /*u=  are given respectively 

in table 1.  
Table 1. Flow parameters 

)/(0 scmU  )(sT  )(mh  )(cmam
 )(cmrη  )(cmrλ  )(cmks

 
wf  )/(* scmu  )(cmδ  

27.8 1.51 0.3 6.68 1.1 7.8 3.88 0.178 6.3 1.5 
 

 

Figure 1: Time-averaged concentration profiles over wave-induced ripples. Symbols: measurements 
(McFetridge and Nielsen, 1985), (○) fine; (×) coarse; Curves: solutions of Eq. (2) (Absi 2010). 

 



Figure 1 shows time-averaged concentrations of fine (○) and coarse (×) sediments suspended by waves 
over ripples. The present method allows a good description of concentration profiles for both fine (dashed 
line) and coarse sand (solid line). The parameters were chosen to give a good fit.  

For an eddy viscosity given by: )015.0/12.1exp(0258.0 zzt ×−××=ν , the parameters are for fine 

sediments: 197.0 ≈=bβ , 438.0=βC  and therefore )022.0/exp(025.0 zzs −××=ε  and for coarse sediments: 

659.0=bβ , 1.1=βC  and therefore )75.0/exp(017.0 zzs −××=ε  with ( )002.0/exp4031 z−+=α . The 

value 438.0=βC  for fine sediments could be related to an inaccurate estimation of the boundary layer 

thickness. For coarse sediments, the profile of *
sε (Absi 2010, solid line in figure 7) shows the effect of 

parameter α which indicates that vortex shedding occurs at z <0.015m.  
 
However in order to allow practical use for predictive purpose, the method needs calibration. Before 

calibrating parameters of α and β, we need to assess and validate the eddy viscosity profile given by Eq. (6).  
 
3. ANALYTICAL EDDY VISCOSITY FORMULATION  

Eq. (6) was used as an empirical equation. However in order to allow more general use, we need a deeper 
theoretical analysis.  
Steady plan channel flows: analysis by DNS data  

In the equilibrium region z+>50, the turbulent kinetic energy (TKE) is given by )/exp(* δzCuk k−≈  

(Nezu and Nakagawa 1993). Since in the inner region the streamwise velocity profile is given by the log-
law, it is possible to write a mixing length as )/exp( δκ zCzl km −=  and therefore Eq. (6) for eddy 

viscosity. Figure 2 shows TKE profiles given by two analytical solutions (Nezu and Nakagawa 1993, Absi 
2008) and eddy viscosity profiles (white dashed lines) given by Eq. (6). In figure 2, variables with the 
superscript of + are those nondimensionalized by the friction velocity and the kinematic viscosity as 

ν/*uzz =+ ; */ukk =+ ; ννν /tt =+ . Comparisons with DNS data (data of Iwamoto 2002, Iwamoto et al. 

2002, Hoyas and Jiménez 2006) show that Eq. (6) provides accurate description of DNS in the equilibrium 
region (Absi et al. 2011).  

 

 
Figure 2: Turbulent kinetic energy (left) and eddy viscosity (right) profiles in plan channel flows for 

different friction Reynolds numbers. Symbols: DNS data; Lines: analytical (Absi, 2008; Absi et al., 2011).  
 
Oscillatory flows: analysis by a two-equation model  

Eq. (6) for eddy viscosity was validated for the case of steady plane channel flow. However for use in 
wave boundary layers, we need to assess this equation for the case of oscillatory flows. Eq. (6) is therefore 
analyzed by the baseline (BSL) k-ω model. This model allows accurate prediction of velocity profiles in 
oscillatory boundary layers (Suntoyo and Tanaka 2009).  

Figure (3.a) presents temporal and spatial variation of dimensionless eddy viscosity for a sinusoidal wave. 
Figure (3.b) shows comparison between period-averaged eddy viscosity obtained by BSL k-ω model 



(symbols) and analytical profile of Eq. (6) (dashed line). Even if the eddy viscosity is highly time-dependent 
(figure 3.a), the period-averaged dimensionless eddy viscosity (Figure 3.b) has a shape which is well 
described by the analytical profile given by Eq. (6) for z/zh < 0.6 (figure3.b) where zh is the water depth or 
the distance from the wall to the axis of symmetry or free surface.  
Figure (3.c) presents temporal and spatial variation of dimensionless eddy viscosity for asymmetric waves. 
Figure (3.d) shows comparison between period-averaged eddy viscosity obtained by BSL k-ω model 
(symbols) and analytical profile of Eq. (6) (dashed line). Even for the case of asymmetric wave, the period-
averaged dimensionless eddy viscosity has a shape which is well described by Eq. (6) for z/zh < 0.5 
(figure3.d).  

Figures (3.b) and (3.d) shows that the period-averaged eddy viscosity profile for sinusoidal wave is 
different from the profile for asymmetric wave. This indicates that the period-averaged eddy viscosity profile 
should depend on the wave non-linearity parameter given by Ni=Uc/û, where Uc is the velocity at wave crest 
and û is the total velocity amplitude. We need therefore a specific calibration for parameters of Eq. (6) using 
full-range equations of friction coefficient (Tanaka and Thu 1994) and wave boundary layer thickness (Sana 
and Tanaka 2007).  
 

(a) (b)  
 

(c) (d)  
Figure 3: Dimensionless eddy viscosity; Left: Temporal and Spatial Variation; Right: Period-averaged 

dimensionless eddy viscosity; Top: sinusoidal wave; Bottom: asymmetric wave.  
 
3. CONCLUSIONS 
 The main conclusions of the present study are:  

- A modified advection-diffusion equation with an additional parameter α related to the process of 
vortex shedding above ripples allows a good description of suspended sediment concentration 
profiles  

- For practical applications the period-averaged eddy viscosity could be described by a simple 
analytical formulation  



- The shape of the analytical period-averaged eddy viscosity formulation was validated by BSL k-ω 
model for sinusoidal and asymmetric waves  

- Period-averaged eddy viscosity profile depends on the wave non-linearity parameter and requires 
therefore a specific calibration.  
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