アンデス地域における熱帯氷河の縮小を考慮した流出解析*

- 日本大学工学部土木工学科 舩木 翔太
- 日本大学工学部土木工学科 朝岡 良浩
- 東京工業大学大学院総合理工学研究科 木内 豪

1. はじめに

南米ボリビアの首都圏(図-1)は、上流域に分 布する熱帯氷河の融解水を水資源として利用し ている。一方,熱帯氷河は気温変化に敏感に反応 するため,近年の地球温暖化に伴う急速な氷河 の縮小や消滅が報告されている」。氷河の急速 な縮小や消滅は、水資源の枯渇を惹起するため、 将来にわたり安定した水資源確保を行なうため の対策を講じる必要がある。このため現在まで に氷河変動やダム流量の観測2)3)あるいは、氷河 融解・流出モデル4)5)が開発されてきた。本研究 の目的は、さまざまな氷河面積を考慮した流出 解析を行い, 流出に対する氷河融解の寄与につ いて評価することである。

2. 対象集水域

本研究は首都圏から北西に 30km 離れたトゥ ニ 貯水池(標高 4437m)の集水域(面積約 90km²) (図-2) を対象とした。トゥニ貯水池は首 都圏の浄水場へ送水しており, 首都圏の水需要 の約30%を賄っている。また、トゥニ貯水池の 下流では雨水吐きからの越流水を灌漑用水とし て利用している。トゥニ貯水池は3河川が流入 しており、大きく3つの集水域に分けることか できる。トゥニ貯水池へ自然流入するトゥニ川 集水域(面積約 15km²)と、雨季に導水管から貯 水池に人工流入するコンドリリ川集水域(面積 約 20km²)とワイナポトシ西川集水域(面積約 40km²)である。

図-1 ボリビア多民族国と首都ラパス

*Sensitivity analysis of runoff with tropical glaciers decline in the Andes by Shota Funaki, Yoshihiro Asaoka and Tsuyoshi Kinouchi

3. データセット

3.1 Landsat 衛星画像

本研究はLandsat5号およびLandsat8 号のTM センサ,OLI センサによる衛 星画像データ(水平分解能 30m)を 1986年~2015年の4年代の氷河面積 算定に用いた。また,これらの衛星画 像はアメリカ地質調査所(USGS: United States Geological Survey)が運用 する LandsatLook Viewer⁶⁾より入手し た。

図-3 地上基準点(GCP)の配置

3.1.1 幾何補正

リモートセンシングにより得られた衛星画像には、地球の回転や衛星自身の移動により幾何 学的な歪が生じる。この歪を除去し正確な地理座標を得るために多項式変換による幾何補正(図 -3)を行なった。基準画像として Google Maps を選定し、対象領域を囲むように地上基準点(GCP: Ground Control Point)を設定した。

3.2 DEM データ

氷河面積の高度分布作成に用いた数値標高モデル(DEM: Digital Elevation Model)データは、全球 3 次元地形データ(ASTER GDEM: Advanced Spaceborne Thermal Emission and Reflection Radiometer Global Digital Elevation Model)のバージョン 2 である。ASTER GDEM の水平分解能は Landsat TM および OLI 画像と同じ 30m である。

3.3 気象データ

氷河融解・流出モデルに入力する気象データは、トゥニ貯水池集水域内の5箇所の観測所である。氷河域の MHG(5150m)と MCG(4930m)、非氷河域の MH1(4736m)、MT1(4472m)、 MC1(4490m)である。降雨、風速、相対湿度、気温、日射量、気圧を観測している。本研究は2011 年7月から2013 年7月までに観測されたデータを用いた。

4. 氷河融解・流出量の推定手法

氷河面積の高度分布と気象データを氷河融解・流出モデルに入力し、トゥニ貯水池の各集水 域を対象として流出解析を行なった。氷河面積と高度分布の4ケースに、氷河の融解が発生し ないと想定したケースを加えた計5ケース(表-1)の流出解析を行なった。モデルに入力する気 象データは全ケース共通して2011年7月1日から2013年7月1日の観測データを使用した。

4.1 氷河融解・流出モデル GRM

本研究は氷河融解・流出量を推定するために氷河融解・流出モデル GRM (Glacier Runoff Model)⁴⁾をトゥニ貯水池の各集水域に適用した。このモデルは氷河面積の高度分布と気象デー タを入力し、標高100m 毎に氷河融解、降雨および降雪による流出量を推定する。

4.2 各集水域の氷河面積と高度分布

人工衛星 LANDSAT5 および 8 から観測された画像データ(水平分解能 30m)を用いて氷河域

実験ケ	ース	Huayna Potosi West 氷河の面積変化率*	Tuni 氷河の面積変化率*	Condoriri 氷河の面積変化率*	入力気象データ
1 (20	14年相当)	1 (2.5 km²)	1 (0.6 km ²)	1 (1.9 km ²)	2011年~2013年
2 (20	03年相当)	1.2 (2.9 km²)	1.5 (0.9 km ²)	1.1 (2.1 km²)	2011年~2013年
3 (19	92年相当)	1.4 (3.5 km²)	2.2 (1.3 km ²)	1.3 (2.5 km²)	2011年~2013年
4 (19	87年相当)	1.9 (4.8 km²)	2.6 (1.5 km ²)	1.2 (2.3 km ²)	2011年~2013年
5	(氷河なし)	0	0	0	2011年~2013年

表-1トゥニ貯水池集水域の氷河面積と流出解析の概要

*2014年の氷河面積を基準()内は氷河面積

を抽出した。また氷河域を標高データと重ね合わせ氷河面積の高度分布を算定した。氷河域の 抽出には, NDSI (Normalized Difference Snow Index)⁷⁾を用いた。これを,3つの集水域で氷河面 積の異なる4つの年代(1987年,1992年,2003年,2014年)で行なった。

氷河域を抽出するために式(1)で示される正規化積雪指数(NDSI: Normalized Difference Snow Index)⁷⁾を使用した。

$$NDSI = \frac{Red - MIR}{Red + MIR} \tag{1}$$

ここで *Red* は赤色域(0.63~0.69µm)の反射率, *MIR* は中間赤外域(1.55~1.75µm)の反射率で ある。NDSI 値は-1.0~1.0 の値を示す。本研究では NDSI に閾値を設けて, 氷河域と非氷河域を 判別した。閾値は, NDSI を 0.5~0.8 まで 0.05 刻みで変化させ, 氷河域を抽出した Landsat 画 像を作成し, 陸域観測技術衛星だいち(ALOS: Advanced Land Observing Satellite) のトゥルーカ ラー画像(水平分解能 15m)と GIS 上で重ね合わせることにより, 氷河の先端部のアウトライン が最も一致する NDSI 値(=0.65)とした。

算定した氷河面積(表-1)と標高データから 100m 毎の高度分布(図-4)を作成した。

図-4 ワイナポトシ川集水域の高度分布(左)と氷河面積変化(右)

5. 結果および考察

5.1 氷河融解・流出量

トゥニ貯水池集水域における流出量の再現計算の結果を図-5 に示す。本研究では各流域から の流出量を合計し、トゥニ貯水池集水域の流出量とした。氷河面積を仮定した流出量と、氷河 融解が発生しないと仮定した流出量の差分をとり、氷河融解による流出量を算出した。ケース 1 (2104 年相当)の年間の流出に対して氷河融解の寄与率は 4.5%であった。同様に、ケース 2(2003 年相当)、ケース 3(1992 年相当)、ケース 4(1987 年相当)は 18%、28%、42%の寄与率と なった。氷河融解水の寄与は乾季の終わりから雨季の始まりの約 4 ヶ月間(9 月~12 月)に集中 し、ケース 1 (2104 年相当)では 21%、ケース 2(2003 年相当)では 43%、ケース 3(1992 年相当) では 54%、ケース 4(1987 年相当)では 65%を占める。

5.1.1 トゥニ貯水池集水域の総流出量の内訳

トゥニ貯水池集水域の総流出量の内訳を図-6 に示す。全集水域合計の氷河融解による流出量の寄与率はケース4(1987年相当)では42%であったのに対して、ケース1(2014年相当)では5%となった。この結果、ケース1(2014年相当)では、トゥニ貯水池は流出量の95%を雨季の降水に依存していることが示された。

5.1.2 各集水域の総流出量に対する氷河融解量の寄与率

図-7に各集水域の総流出量に対する氷河融解量の寄与率を示す。ケース4(1987年相当)に 対してケース1(2014年相当)は寄与率がワイナポトシ川集水域で46%低下,トゥニ川集水域で 26%低下,コンドリリ川集水域で21%低下していることが示された。寄与率がワイナポトシ川 集水域で最も低下した要因として,氷河面積の減少が考えられる。ケース4(1987年相当)に対 してケース1(2014年相当)は氷河面積がワイナポトシ西氷河で2.4km²減少,トゥニ氷河で 0.9km²減少,コンドリリ氷河で0.5km²減少し,ワイナポトシ川集水域の氷河面積の減少が最も 大きい。このことが,ワイナポトシ川集水域の寄与率が最も低下した要因と考えられる。

5.1.3 氷河融解による流出量と氷河面積

図-8 に氷河融解による流出量と氷河面積 の関係を示す。氷河融解による流出量と氷河 面積から求めた回帰直線はトゥニ氷河とワ イナポトシ西氷河で決定係数が0.9以上、コ ンドリリ氷河が 0.7 以上となった。このこと から概ね線形関係と言える。回帰直線の傾 き, すなわち, 氷河面積の減少に対する氷河 融解による流出量の減少はワイナポトシ西 氷河がもっとも大きく,次にコンドリリ氷 河,トゥニ氷河の順となった。この結果,氷 河融解による流出量に対して氷河面積の感 度が大きいのはワイナポトシ西氷河, コンド リリ氷河、トゥニ氷河の順となった。1987年 から 2014 年における氷河面積の減少がコン ドリリ氷河に比べ,トゥニ氷河のほうが大き い。これに対して、氷河面積に対する感度は トゥニ氷河に比べ, コンドリリ氷

図-8 氷河融解による流出量と氷河面積

河のほうが大きい。これは消耗域に概当する標高 4900m 未満の氷河面積の減少がトゥニ氷河に 比べ、コンドリリ氷河のほうが大きく、消耗域の面積減少が影響していると考えられる。

6. まとめ

本研究は熱帯氷河が分布するトゥニ貯水池の集水域に氷河融解・流出モデルを適用し,年間 の流出量に対する融解量の寄与を氷河面積に応じて評価した。氷河面積 8.7km² ~4.9km²の変 化に対して流出量は 38%減少,氷河融解水の寄与率は 65%~21%の変化が示された。さらに, 氷河面積と流出量は概ね線形関係にあり,氷河融解による流出量に対して氷河面積の感度が大 きいのはワイナポトシ西氷河,コンドリリ氷河,トゥニ氷河の順となった。今後は,氷河融解・ 流出量の推定結果を用いてトゥニ貯水池の水資源運用の評価を行なう。

謝辞:本研究の一部は科学研究費補助金(15H06642,代表:朝岡良浩)の助成を受けた。ここに 記して謝意を表する。

参考文献

- Kairi Morizawa, Yoshihiro Asaoka, So Kazama, Luminda Niroshana Gunawardhana, (2013) : Temporal glacier area changes correlated with the El Niño/La Niña Southern Oscillation using satellite imagery, Hydrological Research Letters, Vol. 7, No. 2, p.18-22.
- Tong Liu, Tsuyoshi Kinouchi, Fabiola Ledezma, (2013) : Characterization of recent glacier decline in the Cordillera Real by LANDSAT, ALOS, and ASTER data, Remote Sensing of Environment, Vol.137, pp.158-172.
- 3) Andres Calizaya Terceros, Gustavo AyalaT., Nilo A. Lima Q., Hernando Quisbert S. : ESTRATEGIA PARA LA CONCERTACION Y SOSTENIBILID AD DEL ABASTECIMIENTO DE AGUA PARA LA CIUDAD DE EL ALTO
- T. Kinouchi, T. Liu, J. Mendoza, and Y. Asaoka, (2013) : Modeling glacier melt and runoff in a high-altitude headwater catchment in the Cordillera Real, Andes, Hydrology and Earth System Science Discussions, Vol.10, pp.13093–13144.
- 5) Tong LIU, Tsuyoshi KINOUCHI, (2012) : WATER BALANCE OF GLACIERIZED CATCHMENTS IN TROPICS : A CASE STUDY IN BOLIVIAN ANDES, Journal of Japan Society of Civil Engineers, Ser. B1 (Hydraulic Engineering), Vol.68, No.4, I_247-I_252.
- 6) USGS : LandsatLook Viewer, http://landsatlook.usgs.gov/
- Dozier, J., (1989) : Spectral signature of alpine snow cover from the landsat thematic mapper, Remote Sensing of Environment, 28, pp.9-22.